
Agilent Standard Instrument
Conrol Library
User’s Guide for Windows

Contents
Agilent Standard Instrument Control Library

User’s Guide for Windows

Front Matter ... 7
Notice .. 7
Warranty Information .. 7
U.S. Government Restricted Rights .. 7
Trademark Information ... 8
Printing History ... 8
Copyright Information ... 8

1. Introduction .. 9
What’s in This Guide?.. 11
SICL Overview... 13

2. Getting Started with SICL ... 15
Getting Started Using C... 17
Getting Started Using Visual Basic .. 23

3. Programming with SICL .. 25
Building a SICL Application ... 27
Opening a Communications Session... 31
Sending I/O Commands .. 35
Handling Asynchronous Events ... 55
Handling Errors .. 58
Using Locks ... 64

4. Using SICL with GPIB .. 69
Introduction .. 71
Using GPIB Device Sessions .. 72
Using GPIB Interface Sessions ... 78
Using GPIB Commander Sessions.. 83
Writing GPIB Interrupt Handlers .. 85

5. Using SICL with GPIO ... 89
Introduction .. 91
Using GPIO Interface Sessions ... 94
1

6. Using SICL with VXI ...101
Introduction...103
Using VXI Device Sessions ..105
Using VXI Interface Sessions ...117
Communicating with VME Devices...119
SICL Function Support with VXI ...124
VXI Backplane Memory I/O Performance...................................127
Using VXI-Specific Interrupts..131

7. Using SICL with RS-232 ...135
Introduction...137
Using RS-232 Device Sessions..141
Using RS-232 Interface Sessions...146

8. Using SICL with LAN ..153
LAN Overview...155
Using LAN-gatewayed Sessions ..160
Using LAN Interface Sessions..167
Using Locks and Threads over LAN...169
Using Timeouts with LAN ...171

9. Troubleshooting SICL Programs ..175
SICL Error Codes ...177
Common Windows Problems ...180
Common RS-232 Problems..181
Common GPIO Problems...182
Common LAN Problems...184

10. More SICL Example Programs ..189
Example: Oscillosope Program (C) ..191
Example: Oscillosope Program (Visual Basic)199

11. SICL Language Reference ...203
Introduction...205
IBLOCKCOPY ..207
IBLOCKMOVEX ...209
ICAUSEERR...211
ICLEAR...212
ICLOSE ..213
IDEREFPTR ...214
IFLUSH...215
IFREAD ..217
IFWRITE...219
IGETADDR...221
2

IGETDATA... 222
IGETDEVADDR... 223
IGETERRNO ... 224
IGETERRSTR.. 225
IGETGATEWAYTYPE ... 226
IGETINTFSESS... 227
IGETINTFTYPE ... 228
IGETLOCKWAIT.. 229
IGETLU.. 230
IGETLUINFO ... 231
IGETLULIST .. 233
IGETONERROR .. 234
IGETONINTR... 235
IGETONSRQ ... 236
IGETSESSTYPE ... 237
IGETTERMCHR .. 238
IGETTIMEOUT .. 239
IGPIBATNCTL ... 240
IGPIBBUSADDR.. 241
IGPIBBUSSTATUS.. 242
IGPIBGETT1DELAY.. 244
IGPIBLLO .. 245
IGPIBPASSCTL... 246
IGPIBPPOLL.. 247
IGPIBPPOLLCONFIG.. 248
IGPIBPPOLLRESP.. 249
IGPIBRENCTL... 250
IGPIBSENDCMD ... 251
IGPIBSETT1DELAY .. 252
IGPIOCTRL ... 253
IGPIOGETWIDTH.. 257
IGPIOSETWIDTH .. 258
IGPIOSTAT.. 260
IHINT ... 263
IINTROFF .. 265
IINTRON .. 266
ILANGETTIMEOUT ... 267
ILANTIMEOUT... 268
ILOCAL .. 271
ILOCK .. 272
IMAP .. 275
IMAPX.. 278
IMAPINFO ... 281
IONERROR ... 283
3

IONINTR...286
IONSRQ ...288
IOPEN ..289
IPEEK...291
IPEEKX8, IPEEKX16, IPEEKX32...292
IPOKE...293
IPOKEX8, IPOKEX16, IPOKEX32 ...294
IPOPFIFO...295
IPRINTF..297
IPROMPTF...307
IPUSHFIFO ..308
IREAD...310
IREADSTB..312
IREMOTE ...313
ISCANF ..314
ISERIALBREAK..324
ISERIALCTRL ..325
ISERIALMCLCTRL...328
ISERIALMCLSTAT...329
ISERIALSTAT...330
ISETBUF ..334
ISETDATA..336
ISETINTR ...337
ISETLOCKWAIT...344
ISETSTB...345
ISETUBUF..346
ISWAP..348
ITERMCHR...350
ITIMEOUT ..351
ITRIGGER ..352
IUNLOCK..354
IUNMAP..355
IUNMAPX ...357
IVERSION ..359
IVXIBUSSTATUS ...360
IVXIGETTRIGROUTE ..363
IVXIRMINFO...364
IVXISERVANTS ...367
IVXITRIGOFF...368
IVXITRIGON...370
IVXITRIGROUTE..372
IVXIWAITNORMOP..374
4

IVXIWS .. 375
IWAITHDLR ... 377
IWRITE .. 379
IXTRIG... 381
_SICLCLEANUP.. 384

A. SICL System Information .. 385

Windows 95/Windows 98... 387
Windows NT/Windows 2000.. 389

B. Porting to Visual Basic .. 391

C. SICL Error Codes .. 393

D. SICL Function Summary ... 397

E. RS-232 Cables .. 403

Cable/Adapter Part Numbers... 405
Cable/Adapter Pinouts ... 407

Glossary ... 415

Index .. 419
5

6

Notice

The information contained in this document is subject to change without
notice.

Agilent Technologies shall not be liable for any errors contained in this
document. Agilent Technologies makes no warranties of any kind with
regard to this document, whether express or implied. Agilent Technologies
specifically disclaims the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for any
direct, indirect, special, incidental, or consequential damages, whether
based on contract, tort, or any other legal theory, in connection with the
furnishing of this document or the use of the information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Agilent Technologies
product and replacement parts can be obtained from Agilent Technologies,
Inc.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as "commercial computer
software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-
7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial
item" as defined in FAR 2.101(a), or as "Restricted computer software" as
defined in FAR 52.227-19 (Jun 1987)(or any equivalent agency regulation or
contract clause), whichever is applicable. You have only those rights
provided for such Software and Documentation by the applicable FAR or
DFARS clause or the Agilent standard software agreement for the product
involved.
 7

Trademark Information

Microsoft®, Windows ® 95, Windows ® 98, Windows ® 2000, and
Windows NT® are U.S. registered trademarks of Microsoft Corporation.
All other brand and product names are trademarks or registered trademarks
of their respective companies.

Printing History

Edition 1 - April 1994
Edition 2 - September 1995
Edition 3 - May 1996
Edition 4 - October 1996
Edition 5 - July 2000

Copyright Information

Agilent Technologies Standard Instrument Control Library
User’s Guide for Windows
Edition 5
Copyright © 1984 -1988 Sun Microsystems, Inc.
Copyright © 1994-1998, 2000 Agilent Technologies, Inc.
All rights reserved.
8

1

Introduction
9

Introduction

This Agilent Standard Instrument Control Libraries (SICL) User’s Guide
for Windows describes Agilent SICL and how to use it to develop I/O
applications on Microsoft Windows 95, Windows 98, Windows NT 4.0,
and Windows 2000. A getting started chapter is provided to help you write
and run your first SICL program. Then, this guide explains how to build and
program SICL applications. Later chapters are interface-specific, describing
how to use SICL with GPIB, GPIO, VXI, RS-232, and LAN interfaces.

If You Need Help:

n In the USA and Canada, you can reach Agilent Technologies at
these telephone numbers:

USA: 1-800-452-4844
Canada: 1-877-894-4414

n Outside the USA and Canada, contact your country’s Agilent support
organization. A list of contact information for other countries is
available on the Agilent web site:

http://www.agilent.com/find/assist

NOTE

Before you can use SICL, you must install and configure SICL on your
computer. See the Agilent IO Libraries Installation and Configuration
Guide for Windows for installation on Windows systems. Unless
otherwise indicated, Windows NT refers to Windows NT 4.0.
10 Chapter 1

Introduction
What’s in This Guide?
What’s in This Guide?
This chapter provides an overview of SICL. In addition, this guide contains
the following chapters:

n Chapter 2 - Getting Started with SICL shows how to build and run
an example program in C/C++ and Visual BASIC.

n Chapter 3 - Programming with SICL shows how to build a SICL
application in a Windows environment and provides information on
communications sessions, addressing, error handling, locking, etc..

n Chapter 4 - Using SICL with GPIB shows how to communicate over
the GPIB interface.

n Chapter 5 - Using SICL with GPIO shows how to communicate over
the GPIO interface.

n Chapter 6 - Using SICL with VXI shows how to communicate over
the VXIbus interface.

n Chapter 7 - Using SICL with RS-232 shows how to communicate
over the RS-232 interface.

n Chapter 8 - Using SICL with LAN shows how to communicate over
a Local Area Network (LAN).

n Chapter 9 - Troubleshooting SICL Programs describes some
common SICL programming problems and provides troubleshooting
procedures.

n Chapter 10 - More SICL Example Programs contains additional
example programs to help you develop SICL applications.

n Chapter 11 - SICL Language Reference provides function syntax
and description for each SICL function.

n Appendix A - SICL System Information provides information on
SICL software files and system interaction.
Chapter 1 11

Introduction
What’s in This Guide?
n Appendix B - Porting to Visual Basic explains how to move SICL
applications from earlier versions of Visual Basic (such as version
3.0) to Visual Basic version 4.0 and above.

n Appendix C - SICL Error Codes provides a list of error codes and
error strings along with a brief description of each error.

n Appendix D - SICL Function Summary summarizes supported
features for each SICL function.

n Appendix E - RS-232 Cables lists part numbers and shows wiring
diagrams for several RS-232 cables.

n Glossary includes major terms and definitions used in this guide.
12 Chapter 1

Introduction
SICL Overview
SICL Overview
SICL is part of the Agilent IO Libraries. The Agilent IO Libraries consists of
two libraries: Agilent Virtual Instrument Software Architecture (VISA) and
Agilent Standard Instrument Control Library (SICL).

Introducing VISA and SICL

n Agilent Virtual Instrument Software Architecture (VISA) is an I/O
library designed according to the VXIplug&play System Alliance that
allows software developed from different vendors to run on the same
system.

n Use VISA if you want to use VXIplug&play instrument drivers in your
applications, or if you want the I/O applications or instrument drivers
that you develop to be compliant with VXIplug&play standards. If you
are using new instruments or are developing new I/O applications or
instrument drivers, we recommend you use Agilent VISA.

n Agilent Standard Instrument Control Library (SICL) is an I/O library
developed by Hewlett-Packard and Agilent that is portable across
many I/O interfaces and systems.

n You can use Agilent SICL if you have been using SICL and want to
remain compatible with software currently implemented in SICL.

SICL Description

Agilent Standard Instrument Control Library (SICL) is an I/O library
developed by Hewlett-Packard and Agilent that is portable across many
I/O interfaces and systems. SICL is a modular instrument communications
library that works with a variety of computer architectures, I/O interfaces,
and operating systems. Applications written in C/C++ or Visual BASIC using
this library can be ported at the source code level from one system to
another with no (or very few) changes.

NOTE

Since VISA and SICL are different libraries, using VISA functions and
SICL functions in the same I/O application is not supported.
Chapter 1 13

Introduction
SICL Overview
SICL uses standard, commonly used functions to communicate over a wide
variety of interfaces. For example, a program written to communicate with a
particular instrument on a given interface can also communicate with an
equivalent instrument on a different type of interface.

6,&/�6XSSRUW The 32-bit version of SICL is supported on this version of the Agilent IO
Libraries for Windows 95, Windows 98, Windows NT, and Windows 2000.
Support for the 16-bit version of SICL was removed in version H.01.00.
However, versions through G.02.02 support 16-bit SICL. C, C++, and Visual
BASIC are supported on all these Windows versions. SICL is supported on
the GPIB, GPIO, VXI, RS-232, and LAN interfaces.

6,&/�8VHUV SICL is intended for instrument I/O and C/C++ or Visual BASIC
programmers who are familiar with Windows 95, Windows 98, Windows
2000, or Windows NT. To perform SICL installation and configuration on
Windows NT, you must have system administrator privileges on the
Windows NT system.

6,&/�
'RFXPHQWDWLRQ

This table shows associated documentation you can use when programming
with Agilent SICL.

Agilent SICL Documentation

Document Description

Agilent SICL User’s Guide for
Windows

Shows how to use Agilent SICL and provides the SICL
language reference.

SICL Online Help Information is provided in the form of Windows Help.

SICL Example Programs Example programs are provided online to help you develop
SICL applications. SICL example programs are provided in the
C\SAMPLES (for C/C++) subdirectory and in the VB\SAMPLES
subdirectory (for Visual BASIC) under the base directory where
SICL is installed. For example, under the C:\SICL95 or
C:\SICLNT base directory if the default installation directory was
used.

VXIbus Consortium specifications
(when using VISA over LAN)

TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
TCP/IP-VXIbus Interface Specification - VXI-11.1, Rev. 1.0
TCP/IP-IEEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0
TCP/IP-IEEE 488.2 Instrument Interface Specification - VXI-11.3,
Rev. 1.0
14 Chapter 1

2

Getting Started with SICL
15

Getting Started with SICL

This chapter gives guidelines to help you to get started programming with
SICL using the C/C++ language. This chapter provides example programs in
C/C++ and in Visual Basic to help you verify your configuration and
introduce you to some of SICL’s basic features. The chapter contents are:

n Getting Started Using C
n Getting Started Using Visual Basic

NOTE

This chapter is divided into two sections: the first section is for C
programmers and the second section is for Visual BASIC programmers.
See “Getting Started Using C” if you want to use SICL with the
C/C++ programming language. See “Getting Started Using Visual Basic”
if you want to use SICL with the Visual BASIC programming language.

You may want to see Chapter 11 - SICL Language Reference to
familiarize yourself with SICL functions. This reference information is also
available as online help. To see the reference information online, double-
click the Help icon in the Agilent IO Libraries program group.
16 Chapter 2

Getting Started with SICL
Getting Started Using C
Getting Started Using C
This section describes an example program called IDN that queries a
GPIB instrument for its identification string. This example builds a console
application for WIN32 programs (32-bit SICL programs on Windows 95,
Windows 98, Windows 2000, or Windows NT) using the C programming
language.

C Program Example Code

All files used to develop SICL applications in C or C++ are located in the
C subdirectory of the base IO Libraries directory. Sample C/C++
programs are located in the C\SAMPLES subdirectory of the base IO
Libraries directory.

Each sample program subdirectory contains makefiles or project files that
you can use to build each sample C program. You must first compile the
sample C/C++ programs before you can execute them.

The IDN example files are located in the C\SAMPLES\IDN subdirectory
under the base IO Libraries directory. This subdirectory contains the
source program, IDN.C. The source file IDN.C is listed on the following
pages. An explanation of the function calls in the example follows the
program listing.

/* This program uses the Standard Instrument Control Library to
query a GPIB instrument for an identification string and then
prints the result. This program is to be built as a WIN32 console
application on Windows 95, Windows 98, Windows 2000, or Windows NT.
Edit the DEVICE_ADDRESS line to specify the address of the applicable
device. For example:

hpib7,0: refers to a GPIB device at bus address 0 connected to
 an interface named “hpib7” by the IO Config utility.

hpib7,9,0: refers to a GPIB device at bus address 9, secondary
address 0, connected to an interface named “hpib7”
by the IO Config utility. */

#include <stdio.h> /* for printf() */
#include “sicl.h” /* SICL routines */
#define DEVICE_ADDRESS “hpib7,0” /* Modify to match your setup */
Chapter 2 17

Getting Started with SICL
Getting Started Using C
void main(void)
{
INST id; /* device session id */
char buf[256] = { 0 }; /* read buffer for idn string */

#if defined(__BORLANDC__) && !defined(__WIN32__)
_InitEasyWin();// required for Borland EasyWin programs.

#endif

/* Install a default SICL error handler that logs an error message and exits.
On Windows 95 or Windows 98, view messages with the SICL Message Viewer,
and on Windows 2000 or Windows NT use the Event Viewer. */

ionerror(I_ERROR_EXIT);

/* Open a device session using the DEVICE_ADDRESS */
id = iopen(DEVICE_ADDRESS);

/* Set the I/O timeout value for this session to 1 second */
itimeout(id, 1000);

/* Write the *RST string (and send an EOI indicator) to put the instrument
into a known state. */

iprintf(id, “*RST\n”);

/* Write the *IDN? string and send an EOI indicator, then read the response
into buf.

ipromptf(id, “*IDN?\n”, “%t”, buf);
printf(“%s\n”, buf);
iclose(id);

/* This call is a no-op for WIN32 programs.*/
_siclcleanup();
}

18 Chapter 2

Getting Started with SICL
Getting Started Using C
C Example Code Description

sicl.h. The sicl.h file is included at the beginning of the file to provide the
function prototypes and constants defined by SICL.

INST. Notice the declaration of INST id at the beginning of main. The type
INST is defined by SICL and is used to represent a unique identifier that will
describe the specific device or interface that you are communicating with.
The id is set by the return value of the SICL iopen call and will be set to 0
if iopen fails for any reason.

ionerror. The first SICL call, ionerror, installs a default error handling
routine that is automatically called if any of the subsequent SICL calls result
in an error. I_ERROR_EXIT specifies a built-in error handler that will print
out a message about the error and then exit the program. If desired, a
custom error handling routine could be specified instead.

iopen. When an iopen call is made, the parameter string ”hpib7,0”
passed to iopen specifies the GPIB interface followed by the bus address
of the instrument. The interface name, ”hpib7” , is the name given to the
interface during execution of the IO Config utility. The bus (primary)
address of the instrument follows (”0” in this case) and is typically set
with switches on the instrument or from the front panel of the instrument.

NOTE

On Windows 95, Windows 98, and Windows 2000, error messages may
be viewed by executing the Message Viewer utility in the Agilent
IO Libraries program group. On Windows NT, these messages may
be viewed with the Event Viewer utility in the Agilent IO Libraries
Control on the taskbar.

NOTE

To modify the program to set the interface name and instrument address
to those applicable for your setup, see Chapter 3 - Programming with
SICL for information on using SICL’s addressing capabilities.
Chapter 2 19

Getting Started with SICL
Getting Started Using C
itimeout. itimeout is called to set the length of time (in milliseconds) that
SICL will wait for an instrument to respond. The specified value will depend
on the needs of your configuration. Different timeout values can be set for
different sessions as needed.

iprintf and ipromptf. SICL provides formatted I/O functions that are
patterned after those used in the C programming language. These SICL
functions support the standard ANSI C format strings, plus additional
formats defined specifically for instrument I/O.

The SICL iprintf call sends the Standard Commands for Programmable
Instruments (SCPI) command *RST to the instrument that puts it in a known
state. Then, ipromptf queries the instrument for its identification string.
The string is read back into buf and then printed to the screen. (Separate
iprintf and iscanf calls could have been used to perform this
operation.)

The %t read format string specifies that an ASCII string is to be read back,
with end indicator termination. SICL automatically handles all addressing
and GPIB bus management necessary to perform these reads and writes to
instrument.

iclose and _siclcleanup. The iclose function closes the device session
to this instrument (id is no longer valid after this point). WIN32 programs on
Windows 95, Windows 98, Windows 2000, or Windows NT do not require
the _siclcleanup call.

NOTE

See Chapter 11 - SICL Language Reference or the SICL online Help for
more information on these SICL function calls.
20 Chapter 2

Getting Started with SICL
Getting Started Using C
Compiling the C Example Program

The C\SAMPLES\IDN subdirectory contains a number of files you can use
to build the example with specific compilers. You will have a subset of the
following files, depending on the Windows environment you are using.

Steps to compile the IDN example program follow.

1. Connect an instrument to a GPIB interface that is compatible with
IEEE 488.2.

2. Change directories to the location of the example.

3. The program assumes the GPIB interface name is hpib7 (set
using IO Config) and the instrument is at bus address 0. If
necessary, modify the interface name and instrument address on
the DEVICE_ADDRESS definition line in the IDN.C source file.

IDN.C Example program source file.

IDN.DEF Module definition file for the IDN example program.

MSCIDN.MAK Windows 3.1 makefile for Microsoft C and Microsoft
SDK compilers.

VCIDN.MAK Windows 3.1 project file for Microsoft Visual C++.

VCIDN32.MAK Windows 95 or Windows NT (32-bit) project file for
Microsoft Visual C++.

VCIDN16.MAK Windows 95 (16-bit) project file for Microsoft Visual
C++.

QCIDN.MAK Windows 3.1 project file for Microsoft QuickC for
Windows.

BCIDN.IDE Windows 3.1 project file for Borland C Integrated
Development Environment.

BCIDN32.IDE Windows 95 or Windows NT (32-bit) project file for
Borland C Integrated Development Environment.

BCIDN16.IDE Windows 95 (16-bit) project file for Borland C Integrated
Development Environment.
Chapter 2 21

Getting Started with SICL
Getting Started Using C
4. Select and load the appropriate project or make file. Then, compile
the program as follows:

q For Borland compilers, use Project | Open Project.
Then, select Project | Build All.

q For Microsoft compilers, use Project | Open. Next, set
the include file path by selecting Options | Directories.
Then, in the Include File Path box, enter the full path to the C
subdirectory. Finally, select Project | Re-build All.

Running the C Example Program

To run the IDN example program, execute the program from a console
command prompt.

n For Borland, select Run | Run
n For Microsoft, select Project | Execute or Run | Go

If the program runs correctly, an example of the output if connected to a
54601A oscilloscope is

HEWLETT-PACKARD,54601A,0,1.7

If the program does not run, see the message logger for a list of run-time
errors, and see Chapter 9 - Troubleshooting SICL Programs for guidelines to
correct the problem.

Where to Go Next

Go to Chapter 3 - Programming with SICL. In addition, you should see the
chapter(s) that describe how to use SICL with your specific interface(s):

n Chapter 4 - Using SICL with GPIB
n Chapter 5 - Using SICL with GPIO
n Chapter 6 - Using SICL with VXI
n Chapter 7 - Using SICL with RS-232
n Chapter 8 - Using SICL with LAN

You may also want to familiarize yourself with SICL functions, defined in
Chapter 11 - SICL Language Reference and in the reference information
provided in SICL online Help. If you have any problems, see Chapter 9 -
Troubleshooting SICL Programs.
22 Chapter 2

Getting Started with SICL
Getting Started Using Visual Basic
Getting Started Using Visual Basic
There is a collection of Visual Basic sample programs in the VB\SAMPLES
subdirectory of the base IO Libraries directory. See these programs as
examples of using SICL with Visual Basic.

Be sure to include the sicl4.bas file (in the VB directory) in your Visual Basic
project. This file contains the necessary SICL definitions, function
prototypes, and support procedures to allow you to call SICL functions from
Visual Basic.

Where to Go Next

Go to Chapter 3 - Programming with SICL. In addition, you should see the
chapter(s) that describe how to use SICL with your specific interface(s):

n Chapter 4 - Using SICL with GPIB
n Chapter 5 - Using SICL with GPIO
n Chapter 6 - Using SICL with VXI
n Chapter 7 - Using SICL with RS-232
n Chapter 8 - Using SICL with LAN

You may also want to familiarize yourself with SICL functions, defined in
Chapter 11 - SICL Language Reference and in the reference information
provided in SICL online Help. If you have any problems, see Chapter 9 -
Troubleshooting SICL Programs.
Chapter 2 23

Getting Started with SICL
Getting Started Using Visual Basic
Notes:
24 Chapter 2

3

Programming with SICL
25

Programming with SICL

This chapter describes how to build a SICL application and then describes
SICL programming techniques. Example programs are also provided to help
you develop SICL applications. The chapter includes:

n Building a SICL Application
n Opening a Communications Session
n Sending I/O Commands
n Handling Asynchronous Events
n Handling Errors
n Using Locks

NOTE

Copies of the example programs are located in the C\SAMPLES\MISC
subdirectory (for C/C++) or in the VB\SAMPLES\MISC subdirectory (for
Visual Basic) under the base IO Libraries directory. For details on
SICL functions, see Chapter 11 - SICL Language Reference or SICL
online Help.
26 Chapter 3

Programming with SICL
Building a SICL Application
Building a SICL Application
This section gives guidelines to build a SICL application in a Windows
environment.

Including the SICL Declaration File

For C and C++ programs, you must include the sicl.h header file at the
beginning of every file that contains SICL function calls. This header file
contains the SICL function prototypes and the definitions for all SICL
constants and error codes.

#include “sicl.h”

For Visual Basic version 3.0 or earlier programs, you must add the
SICL.BAS file to each project that calls SICL. For Visual Basic version 4.0
or later programs, you must add the SICL4.BAS file to each project that
calls SICL.

Libraries for C Applications and DLLs

All WIN32 applications and DLLs that use SICL must link to the
SICL32.LIB import library. (Borland compilers use BCSICL32.DLL.)

The SICL libraries are located in the C directory under the IO Libraries
base directory (for example, C:\Program Files\Agilent\IO
Libraries\C if you installed SICL in the default location). You may
want to add this directory to the library file path used by your language tools.

Use the DLL version of the C run-time libraries, because the run-time
libraries contain global variables that must be shared between your
application and the SICL DLL.

If you use the static version of the C run-time libraries, these global variables
will not be shared and unpredictable results could occur. For example, if you
use isscanf with the %F format, an application error will occur. The
following sections describe how to use the DLL versions of the run-time
libraries.
Chapter 3 27

Programming with SICL
Building a SICL Application
Compiling and Linking C Applications

A summary of important compiler-specific considerations follows for several
C/C++ compiler products when developing WIN32 applications.

0LFURVRIW�9LVXDO�
&���&RPSLOHUV

1. Select Project | Settings or Build | Settings from
the menu (depending on the version of your compiler).

2. Click the C/C++ button. Then, select Code Generation from
the Category list box and select Multithreaded Using DLL
from the Use Run-Time Library list box. Click OK to close the
dialog box.

3. Select Project | Settings or Build | Settings from
the menu. Click the Link button. Then, add sicl32.lib to the
Object/Library Modules list box. Click OK to close the
dialog box.

4. You may want to add the SICL C directory (for example,
C:\Program Files\Agilent\IO Libraries\C to the include
file and library file search paths. To do this, select Tools |
Options from the menu and click the Directories button.
Then:

q To set the include file path, select Include Files from
the Show Directories for: list box. Next, click the Add
button and type in C:\Program Files\Agilent\IO
Libraries\C. Then, click OK.

q To set the library file path, select Library Files from the
Show Directories for: list box. Next, click the Add
button and type in C:\Program Files\Agilent\IO
Libraries\C. Then, click OK.

NOTE

If you are using a version of the Microsoft or Borland compilers other than
those listed in this subsection, the menu structure and selections may be
different than indicated here. However, the equivalent functionality exists
for your specific version.
28 Chapter 3

Programming with SICL
Building a SICL Application
%RUODQG�&���
9HUVLRQ�����
&RPSLOHUV

1. Link your programs with BCSICL32.LIB, not SICL32.LIB.
BCSICL32.LIB is located in the C subdirectory under the SICL
base directory (for example, C:\Program Files\Agilent\
IO Libraries\C if SICL is installed in the default location).

2. Edit the BCC32.CFG and TLINK32.CFG files, which are located in
the BIN subdirectory of the Borland C installation directory.

q Add the following line to BCC32.CFG so the compiler can find
the sicl.h file:

-IC:\IO_base_dir\C

where IO_base_dir is the IO Libraries base directory.

q Add the following line to both files so the compiler and linker
can find BCSICL32.LIB:

-LC:\IO_base_dir\C

where IO_base_dir is the IO Libraries base directory.

q For example, to create MYPROG.EXE from MYPROG.C, type:

BCC32 MYPROG.C BCSICL32.LIB

Loading and Running Visual Basic Applications

To load and run an existing Visual Basic application, first run Visual Basic.
Then, open the project file for the program you want to run by selecting
File | Open Project from the Visual Basic menu. Visual Basic project
files have a .MAK file extension. After you haved opened the application’s
project file, you can run the application by pressing F5 or the Run button on
the Visual Basic Toolbar.

You can create a standalone executable (.EXE) version of this program by
selecting File | Make EXE File from the Visual Basic menu. Once this
is done, the application can be run stand-alone (just like any other .EXE file)
without having to run Visual Basic.
Chapter 3 29

Programming with SICL
Building a SICL Application
Thread Support for 32-bit Windows Applications

SICL can be used in multi-threaded designs and SICL calls can be made
from multiple threads, in WIN32 applications. However, there are some
important points:

n SICL error handlers (installed with ionerror) are per process
(not per thread) but are called in the context of the thread that
caused the error to occur. Calling ionerror from one thread will
overwrite any error handler presently installed by another thread.

n The igeterrno is per thread and returns the last SICL error that
occurred in the current thread.

n You may want to make use of the SICL session locking functions
(ilock and iunlock) to help coordinate common instrument
accesses from more than one thread.

n See Chapter 8 - Using SICL with LAN for thread information when
using SICL with LAN.
30 Chapter 3

Programming with SICL
Opening a Communications Session
Opening a Communications Session
A communications session is a channel of communication with a particular
device, interface, or commander:

n A device session is used to communicate with a device on an
interface. A device is a unit that receives commands from a
controller. Typically a device is an instrument but could be a
computer, a plotter, or a printer.

n An interface session is used to communicate with a specified
interface. Interface sessions allow you to use interface-specific
functions (for example, igpibsendcmd).

n A commander session is used to communicate with the interface’s
commander. Typically a commander session is used when a
computer is acting like a device.

Steps to Open a Communications Session

There are two parts to opening a communications session with a specific
device, interface, or commander. First, you must declare a variable for the
SICL session identifier. C and C++ programs should declare the session
variable to be of type INST. Visual Basic programs should declare the
session variable to be of type Integer. Once the variable is declared,
you can open the communication channel by using the SICL iopen
function, as shown in the following example.

C example:

INST id;
id = iopen (addr);

Visual Basic example:

Dim id As Integer
id = iopen (addr)

Where id is the session identifier used to communicate to a device,
interface, or commander. The addr parameter specifies a device or interface
address, or the term cmdr for a commander session. See the sections that
follow for details on creating the different types of communications sessions.
Chapter 3 31

Programming with SICL
Opening a Communications Session
Your program may have several sessions open at the same time by creating
multiple session identifiers with the iopen function. Use the SICL iclose
function to close a channel of communication.

Device Sessions

A device session allows you direct access to a device without knowing the
type of interface to which the device is connected. On GPIB, for example,
you do not have to address a device to listen before sending data to it. This
insulation makes applications more robust and portable across interfaces,
and is recommended for most applications.

Device sessions are the recommended way of communicating using SICL.
They provide the highest level programming method, best overall
performance, and best portability.

$GGUHVVLQJ�'HYLFH�
6HVVLRQV

To create a device session, specify the interface logical unit or symbolic
name and a specific device logical address in the addr parameter of the
iopen function. The logical unit is an integer corresponding to the interface.

The device address generally consists of an integer that corresponds to the
device’s bus address. It may also include a secondary address which is an
integer. (Secondary addressing is not supported on RS-232 interfaces.) The
following are valid device addresses:

The interface logical unit and symbolic name are set by running the IO
Config utility from the Agilent IO Libraries Control (on the
taskbar) for Windows 95, Windows 98, Windows 2000, or Windows NT.
See the Agilent IO Libraries Installation and Configuration Guide for
Windows for information on the IO Config utility.

7,23 Device at address 23 connected to an interface card at
logical unit 7.

7,23,1 Device at address 23, secondary address 1, connected
to an interface card at logical unit 7.

hpib,23 GPIB device at address 23.

hpib2,23,1 GPIB device at address 23, secondary address 1,
connected to a second GPIB interface card.

com1,488 RS-232 device
32 Chapter 3

Programming with SICL
Opening a Communications Session
([DPSOHV��2SHQLQJ�
D�'HYLFH�6HVVLRQ

The following examples open a device session with a GPIB device at
address 23.

C example:

INST dmm;
dmm = iopen (“hpib,23”);

Visual Basic example:

Dim dmm As Integer
dmm = iopen (“hpib,23”)

Interface Sessions

An interface session allows direct, low-level control of the specified interface.
A full set of interface-specific SICL functions existds for programming
features that are specific to a particular interface type (GPIB, Serial, etc.).
This provides full control of the activities on a given interface, but does
create less portable code.

$GGUHVVLQJ�,QWHUIDFH�
6HVVLRQV

To create an interface session, specify the particular interface logical unit or
symbolic name in the addr parameter of the iopen function. The interface
logical unit and symbolic name are set by running the IO Config utility
from the Agilent IO Libraries Control (on the taskbar) for Windows
95, Windows 98, Windows 2000, or Windows NT. See the Agilent IO
Libraries Installation and Configuration Guide for Windows for information on
the IO Config utility.

The logical unit is an integer that corresponds to a specific interface. The
symbolic name is a string which uniquely describes the interface. The
following are valid interface addresses:

7 Interface card at logical unit 7

hpib GPIB interface card.

hpib2 Second GPIB interface card.

com1 RS-232 interface card.
Chapter 3 33

Programming with SICL
Opening a Communications Session
([DPSOHV��2SHQLQJ�
DQ�,QWHUIDFH�6HVVLRQ

These examples open an interface session with an RS-232 interface.

C example:

INST com1;
com1 = iopen (“com1”);

Visual Basic example:

Dim com1 As Integer
com1 = iopen (“com1”)

Commander Sessions

A commander session allows your computer to talk to the interface controller.
Typically, the controller is the computer used to communicate with devices
on the interface. When the computer is not active controller, commander
sessions can be used to talk to the computer that is active controller. In this
mode, the computer is acting like a device on the interface.

$GGUHVVLQJ�
&RPPDQGHU�
6HVVLRQV

To create a commander session, specify a valid interface address followed
by a comma and then the string cmdr in the iopen function. The following
are valid commander addresses:

([DPSOHV��&UHDWLQJ�
D�&RPPDQGHU�
6HVVLRQ

These examples create a commander session with the GPIB interface.
The function calls open a session of communication with the commander
on a GPIB interface.

C example:

INST cmdr;
cmdr = iopen(“hpib,cmdr”);

Visual Basic example:

Dim cmdr As Integer
cmdr = iopen (“hpib,cmdr”)

hpib,cmdr GPIB commander session.

7,cmdr Commander session on interface at logical unit 7.
34 Chapter 3

Programming with SICL
Sending I/O Commands
Sending I/O Commands
Once you have established a communications session with a device,
interface, or commander, you can start communicating with that session
using SICL’s I/O routines. SICL provides formatted I/O and non-formatted
I/O routines.

n Formatted I/O converts mixed types of data under the control of a
format string. The data is buffered, thus optimizing interface traffic.
The formatted I/O routines are geared towards instruments, and
reduce the amount of I/O code.

n Non-formatted I/O sends or receives raw data to a device, interface,
or commander. With non-formatted I/O, no format or conversion of
the data is performed. Thus, if formatted data is required, it must be
done by the user.

Formatted I/O in C Applications

The SICL formatted I/O mechanism is similar to the C stdio mechanism.
SICL formatted I/O, however, is designed specifically for instrument
communication and is optimized for IEEE 488.2 compatible instruments.
The three main functions for formatted I/O in C applications are:

n The iprintf function formats according to the format string and
sends data to a device:

iprintf(id, format [,arg1][,arg2][,...]);

n The iscanf function receives and converts data according to the
format string:

iscanf(id, format [,arg1][,arg2][,...]);

n The ipromptf function formats and sends data to a device and
then immediately receives and converts the response data:

ipromptf(id, writefmt, readfmt [,arg1][,arg2][,...]);

The formatted I/O functions are buffered. Also, there are two non-buffered
and non-formatted I/O functions called iread and iwrite. (See “Non-
Formatted I/O” later in this chapter.) These are raw I/O functions and do not
intermix with formatted I/O functions.
Chapter 3 35

Programming with SICL
Sending I/O Commands
If raw I/O must be mixed, use the ifread/ifwrite functions. These
functions have the same parameters as iread and iwrite, but read or
write raw output data to the formatted I/O buffers. See “Formatted I/O
Buffers” in this section for more details.

)RUPDWWHG�,�2�
&RQYHUVLRQ

Formatted I/O functions convert data under the control of the format string.
The format string specifies how the argument is converted before it is input
or output. A typical format string syntax is:

%[format flags][field width][. precision][, array
size][argument modifier]conversion character

See iprintf, ipromptf, and iscanf in Chapter 11 - SICL Language
Reference for more information on how data is converted under the control
of the format string

Format Flags. Zero or more flags may be used to modify the meaning of
the conversion character. The format flags are only used when sending
formatted I/O (iprintf and ipromptf). Supported format flags are:

Format
Flag

Description

@1 Converts to a 488.2 NR1 number.

@2 Converts to a 488.2 NR2 number.

@3 Converts to a 488.2 NR3 number.

@H Converts to a 488.2 hexadecimal number.

@Q Converts to a 488.2 octal number.

@B Converts to a 488.2 binary number.

+ Prefixes number with sign (+ or –).

– Left justifies result.

space Prefixes number with blank space if positive or with – if negative.

Uses alternate form. For o conversion, it prints a leading zero. For x
or X, a nonzero will have 0x or 0X as a prefix. For e, E, f, g, or G, the
result will always have one digit on the right of the decimal point.

0 Causes left pad character to be a zero for all numeric conversion
types.
36 Chapter 3

Programming with SICL
Sending I/O Commands
This example converts numb into a 488.2 floating point number and sends
the value to the session specified by id:

int numb = 61;
iprintf (id, “%@2d&\n”, numb);

Sends: 61.000000

Field Width. Field width is an optional integer that specifies how many
characters are in the field. If the formatted data has fewer characters than
specified in the field width, it will be padded. The padded character is
dependent on various flags. You can use an asterisk (*) in place of the
integer to indicate that the integer is taken from the next argument.

This example pads numb to six characters and sends the value to the
session specified by id:

long numb = 61;
iprintf (id, “%6ld&\n”, numb);

Pads to six characters: 61

. Precision. Precision is an optional integer preceded by a period. When
used with conversion characters e, E, and f, the number of digits to the
right of the decimal point are specified. For the d, i, o, u, x, and X
conversion characters, the minimum number of digits to appear is specified.
For the s and S conversion characters, the precision specifies the maximum
number of characters to be read from the argument. This field is only used
when sending formatted I/O (iprintf and ipromptf). You can use an
asterisk (*) in place of the integer to indicate that the integer is taken from
the next argument.

This example converts numb so that there are only two digits to the right of
the decimal point and sends the value to the session specified by id:

float numb = 26.9345;
iprintf (id, “.2f\n”, numb);

Sends : 26.93

, Array Size. The comma operator is a format modifier which allows you to
read or write a comma-separated list of numbers (only valid with %d and %f
conversion characters). It is a comma followed by an integer. The integer
indicates the number of elements in the array. The comma operator has the
format of , dd where dd is the number of elements to read or write.
Chapter 3 37

Programming with SICL
Sending I/O Commands
This example specifies a comma-separated list to be sent to the session
specified by id:

int list[5]={101,102,103,104,105};
iprintf (id, “%,5d\n”, list);

Sends: 101,102,103,104,105

Argument Modifier. The meaning of the optional argument modifier
h, l, w, z, or Z is dependent on the conversion character.

Argument Modifiers in C Applications

Conversion Characters. The conversion characters for sending and receiving
formatted I/O are different. The following tables summarize the conversion
characters for each.

Argument
Modifier

Conversion
Character

Description

h d,i Corresponding argument is a short integer.

h f Corresponding argument is a float for iprintf
or a pointer to a float for iscanf.

l d,i Corresponding argument is a long integer.

l b,B Corresponding argument is a pointer to a block
of long integers.

l f Corresponding argument is a double for iprintf
or a pointer to a double for iscanf.

w b,B Corresponding argument is a pointer to a block
of short integers.

z b,B Corresponding argument is a pointer to a block
of floats.

Z b,B Corresponding argument is a pointer to a block
of doubles.
38 Chapter 3

Programming with SICL
Sending I/O Commands
iprintf and ipromptf Conversion Characters in C Applications

This example sends an arbitrary block of data to the session specified by the
id parameter. The asterisk (*) is used to indicate that the number is taken
from the next argument:

int size = 1024;
char data [1024];
.
.
iprintf (id, “%*b&\n”, size, data);

Sends 1024 characters of block data.

Conversion
Character

Description

d,i Corresponding argument is an integer.

f Corresponding argument is a float.

b,B Corresponding argument is a pointer to an arbitrary block
of data.

c,C Corresponding argument is a character.

t Controls whether the END indicator is sent with each LF
character in the format string.

s,S Corresponding argument is a pointer to a null terminated
string.

% Sends an ASCII percent (%) character.

o,u,x,X Corresponding argument will be treated as an unsigned
integer.

e,E,g,G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

F Corresponding argument is a pointer to a FILE descriptor
opened for reading.
Chapter 3 39

Programming with SICL
Sending I/O Commands
 iscanf and ipromptf Conversion Characters in C Applications

This example receives data from the session specified by the id parameter
and converts the data to a string:

char data[180];
iscanf (id, “%s”, data);

([DPSOH��)RUPDWWHG�
,�2��&��

This C program example shows one way to send and receive formatted I/O.
This example opens an GPIB communications session with a multimeter
and uses a comma operator to send a comma-separated list to the
multimeter. The lf conversion characters are used to receive a double from
the multimeter.

/* formatio.c
This example program makes a multimeter measurement
with a comma-separated list passed with formatted
I/O and prints the results */

#include <sicl.h>
#include <stdio.h>
main()
{

INST dvm;
double res;
double list[2] = {1,0.001};

#if defined(__BORLANDC__) && !defined(__WIN32__)
_InitEasyWin(); /*Required for Borland EasyWin programs*/
#endif

Conversion
Character

Description

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character.

s,S,t Corresponding argument is a pointer to a string.

o,u,x Corresponding argument must be a pointer to an unsigned
integer.

[Corresponding argument must be a character pointer.

F Corresponding argument is a pointer to a FILE descriptor
opened for writing.
40 Chapter 3

Programming with SICL
Sending I/O Commands
/* Log message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen (“hpib7,16”);
itimeout (dvm, 10000);

/*Initialize dvm*/
iprintf (dvm, “*RST\n”);

/*Set up multimeter and send comma-separated list*/
iprintf (dvm, “CALC:DBM:REF 50\n”);
iprintf (dvm, “MEAS:VOLT:AC? %,2lf\n”, list);

/* Read the results */
iscanf (dvm,”%lf”,&res);

/* Print the results */
printf (“Result is %f\n”,res);

/* Close the multimeter session */
iclose (dvm);

/* This is a no-op for WIN32 programs.*/
_siclcleanup();

 return 0;
}

)RUPDW�6WULQJ The format string for iprintf puts a special meaning on the newline
character (\n). The newline character in the format string flushes the output
buffer to the device. All characters in the output buffer will be written to the
device with an END indicator included with the last byte (the newline
character). This means you can control at what point you want the data
written to the device.

If no newline character is included in the format string for an iprintf call,
the characters converted are stored in the output buffer. It will require
another call to iprintf or a call to iflush to have those characters
written to the device.

This can be very useful in queuing up data to send to a device. It can also
raise I/O performance by doing a few large writes instead of several smaller
Chapter 3 41

Programming with SICL
Sending I/O Commands
writes. This behavior can be changed by the isetbuf and isetubuf
functions. See “Formatted I/O Buffers” for details.

The format string for iscanf ignores most white-space characters.
Two white-space characters that it does not ignore are newlines (\n) and
carriage returns (\r). These characters are treated just like normal
characters in the format string, which must match the next non-white-space
character read from the device.

)RUPDWWHG�,�2�
%XIIHUV

The SICL software maintains both a read and write buffer for formatted I/O
operations. Occasionally, you may want to control the actions of these
buffers. See the isetbuf function for other options for buffering data.

The write buffer is maintained by the iprintf and the write portion of the
ipromptf functions. It queues characters to send to the device so that they
are sent in large blocks, thus increasing performance. The write buffer
automatically flushes when it sends a newline character from the format
string (see the %t conversion character to change this feature).

The write buffer also flushes immediately after the write portion of the
ipromptf function. It may occasionally be flushed at other non-
deterministic times, such as when the buffer fills. When the write buffer
flushes, it sends its contents to the device.

 The read buffer is maintained by the iscanf and the read portion of the
ipromptf functions. The read buffer queues the data received from a
device until it is needed by the format string. The read buffer is automatically
flushed before the write portion of an ipromptf. Flushing the read buffer
destroys the data in the buffer and guarantees that the next call to iscanf
or ipromptf reads data directly from the device rather than data that was
previously queued.

NOTE

Flushing the read buffer also includes reading all pending response data
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator
from the device.
42 Chapter 3

Programming with SICL
Sending I/O Commands
5HODWHG�)RUPDWWHG
,�2�)XQFWLRQV

A set of functions related to formatted I/O follows.

ifread Obtains raw data directly from the read formatted I/O buffer.
This is the same buffer that iscanf uses.

ifwrite Writes raw data directly to the write formatted I/O buffer. This is
the same buffer that iprintf uses.

iprintf Converts data via a format string and writes the arguments
appropriately.

iscanf Reads data from a device/interface, converts this data via a
format string, and assigns the values to your arguments.

ipromptf Sends, then receives, data from a device/instrument. It also
converts data via format strings that are identical to iprintf
and iscanf.

iflush Flushes the formatted I/O read and write buffers. A flush of the
read buffer means that any data in the buffer is lost. A flush of
the write buffer means that any data in the buffer is written to
the session’s target address.

isetbuf Sets the size of the formatted I/O read and the write buffers.
A size of zero (0) means no buffering. If no buffering is used,
performance can be severely affected.

isetubuf Sets the read or the write buffer to your allocated buffer.
The same buffer cannot be used for both reading and writing.
Also you should be careful when using buffers that are
automatically allocated.
Chapter 3 43

Programming with SICL
Sending I/O Commands
Formatted I/O in Visual Basic Applications

SICL formatted I/O is designed specifically for instrument communication
and is optimized for IEEE 488.2 compatible instruments. The two main
functions for formatted I/O in Visual Basic applications are:

n The ivprintf function formats according to the format string and
sends data to a device:

Function ivprintf(id As Integer, fmt As String,
ap As Any) As Integer

n The ivscanf function receives and converts data according to the
format string:

Function ivscanf(id As Integer, fmt As String,
ap As Any) As Integer

The formatted I/O functions are buffered. There are two non-buffered and
non-formatted I/O functions called iread and iwrite. (See “Non-
Formatted I/O” later in this chapter.) These are raw I/O functions and do not
intermix with the formatted I/O functions.

If raw I/O must be mixed, use the ifread/ifwrite functions. They have
the same parameters as iread and iwrite, but read or write raw output
data to the formatted I/O buffers. See “Formatted I/O Buffers” for details.

NOTE

There are certain restrictions when using ivprintf and ivscanf with
Visual Basic. For details about these restrictions, see “Restrictions Using
ivprintf in Visual Basic” in the iprintf function or “Restrictions
Using ivscanf in Visual Basic” in the iscanf function in Chapter 11 -
SICL Language Reference.
44 Chapter 3

Programming with SICL
Sending I/O Commands
)RUPDWWHG�,�2�
&RQYHUVLRQ

The formatted I/O functions convert data under the control of the format
string. The format string specifies how the argument is converted before it is
input or output. The typical format string syntax is:

%[format flags][field width][. precision][, array
size][argument modifier]conversion character

See iprintf and iscanf in Chapter 11 - SICL Language Reference for
more information on how data is converted under the control of the format
string.

Format Flags. Zero or more flags may be used to modify the meaning of the
conversion character. The format flags are only used when sending
formatted I/O (ivprintf). Supported format flags are:

Format Flags for ivprintf in Visual Basic Applications

Format
Flag

Description

@1 Converts to a 488.2 NR1 number.

@2 Converts to a 488.2 NR2 number.

@3 Converts to a 488.2 NR3 number.

@H Converts to a 488.2 hexadecimal number.

@Q Converts to a 488.2 octal number.

@B Converts to a 488.2 binary number.

+ Prefixes number with sign (+ or –).

– Left justifies result.

space Prefixes number with blank space if positive or with – if
negative.

Uses alternate form. For o conversion, it prints a leading zero.
For x or X, a nonzero will have 0x or 0X as a prefix. For e, E, f,
g, or G, the result will always have one digit on the right of the
decimal point.

0 Causes left pad character to be a zero for all numeric
conversion types.
Chapter 3 45

Programming with SICL
Sending I/O Commands
This example converts numb into a 488.2 floating point number to the
session specified by id. The function return values must be assigned to
variables for all Visual Basic function calls. Also, + Chr$(10) adds the
newline character to the format string to indicate that the formatted I/O write
buffer should be flushed. (This is equivalent to the \n character sequence
used for C/C++ programs.

Dim numb As Integer
Dim ret_val As Integer

numb = 61
ret_val = ivprintf(id, “%@2d” + Chr$(10), numb)

Sends: 61.000000

Field Width. Field width is an optional integer that specifies how many
characters are in the field. If the formatted data has fewer characters than
specified in the field width, it will be padded. The padded character is
dependent on various flags.

This example pads numb to six characters and sends the value to the
session specified by id:

Dim numb As Integer
Dim ret_val As Integer

numb = 61
ret_val = ivprintf(id, “%6d” + Chr$(10), numb)

Pads to six characters: 61

. Precision. Precision is an optional integer preceded by a period. When
used with conversion characters e, E, and f, the number of digits to the
right of the decimal point are specified. For the d, i, o, u, x, and X
conversion characters, the minimum number of digits to appear is specified.
This field is only used when sending formatted I/O (ivprintf).

This example converts numb so there are only two digits to the right of the
decimal point and sends the value to the session specified by id:

Dim numb As Double
Dim ret_val As Integer
numb = 26.9345
ret_val = ivprintf(id, “%.2lf” + Chr$(10), numb)

Sends : 26.93
46 Chapter 3

Programming with SICL
Sending I/O Commands
, Array Size. The comma operator is a format modifier which allows you to
read or write a comma-separated list of numbers (only valid with %d and %f
conversion characters). It is a comma followed by an integer. The integer
indicates the number of elements in the array. The comma operator has the
format of ,dd where dd is the number of elements to read or write.

This example specifies a comma separated list to be sent to the session
specified by id:

Dim list(4) As Integer
Dim ret_val As Integer

list(0) = 101
list(1) = 102
list(2) = 103
list(3) = 104
list(4) = 105

ret_val = ivprintf(id, “%,5d” + Chr$(10), list(0))

Sends: 101,102,103,104,105

Argument Modifier. The meaning of the optional argument modifier
h, l, w, z, or Z is dependent on the conversion character.

Argument Modifiers in Visual Basic Application

Conversion Characters. The conversion characters for sending and receiving
formatted I/O are different. The following tables summarize the conversion
characters for each:

Argument
Modifier

Conversion
Character

Description

h d,i Corresponding argument is an Integer.

h f Corresponding argument is a Single.

l d,i Corresponding argument is a Long.

l d,B Corresponding argument is an array of Long.

l f Corresponding argument is a Double.

w d,B Corresponding argument is an array of Integer.

z d,B Corresponding argument is an array of Single.

Z d,B Corresponding argument is an array of Double.
Chapter 3 47

Programming with SICL
Sending I/O Commands
ivprintf Conversion Characters in Visual Basic Applications

ivscanf Conversion Characters in Visual Basic Applications

Conversion
Character

Description

d, i Corresponding argument is an Integer.

b, B Not supported on Visual Basic.

c,C Not supported on Visual Basic.

t Not supported on Visual Basic.

s,S Not supported on Visual Basic.

% Sends an ASCII percent (%) character.

o,u,x,X Corresponding argument will be treated as an Integer.

f,e,E,g,G Corresponding argument is a Double.

n Corresponding argument is an Integer.

F Corresponding arg is a pointer to a FILE descriptor.

Conversion
Character

Description

d,i,n Corresponding argument must be an Integer.

e,f,g Corresponding argument must be a Single.

c Corresponding argument is a fixed length String.

s,S,t Corresponding argument is a fixed length String.

o,u,x Corresponding argument must be an Integer.

[Corresponding argument must be a fixed length character String.

F Not supported on Visual Basic.
48 Chapter 3

Programming with SICL
Sending I/O Commands
This example receives data from the session specified by the id parameter
and converts the data to a string:

Dim ret_val As Integer
Dim data As String * 180

ret_val = ivscanf(id, “%180s”, data)

([DPSOH��)RUPDWWHG�
,�2��9LVXDO�%DVLF��

This Visual Basic program example sends and receives formatted I/O.
The example opens a GPIB communications session with a multimeter and
uses a comma operator to send a comma-separated list to the multimeter.
The lf conversion characters are then used to receive a Double from the
multimeter.

‘ formatio.bas
‘ The following subroutine makes a multimeter measurement with a comma-
‘ separated list passed with formatted I/O and prints the results.
‘
Sub main()

Dim dvm As Integer
Dim res As Double
ReDim list(2) As Double
Dim nRetVal As Integer

On Error GoTo ErrorHandler

‘ Initialize values in list
list(0) = 1
list(1) = 0.001

‘ Open the multimeter session
dvm = iopen(“hpib7,0”)
Call itimeout(dvm, 10000)

‘ Initialize dvm.
nRetVal = ivprintf(dvm, “*RST” + Chr$(10), 0&)

‘ Set up multimeter and send comma separated list
nRetVal = ivprintf(dvm, “CALC:DBM:REF 50” + Chr$(10))
nRetVal = ivprintf(dvm, “MEAS:VOLT:AC? %,2lf” + Chr$(10), list())

‘ Read the results.
nRetVal = ivscanf(dvm, “%lf”, res)
Chapter 3 49

Programming with SICL
Sending I/O Commands
‘ Display the results
MsgBox “Result is “ + Format$(res)

‘ Close the multimeter session
Call iclose(dvm)

‘ Tell SICL to clean up for this task
Call siclcleanup
End

ErrorHandler:
‘ Display the error message
MsgBox “*** Error : “ + Error$, MB_ICON_EXCLAMATION
‘ Tell SICL to clean up for this task
Call siclcleanup
End

End Sub

)RUPDW�6WULQJ In the format string for ivprintf, when the special characters Chr$(10)
is used the output buffer to the device is flushed. All characters in the output
buffer will be written to the device with an END indicator included with the
last byte. This means you can control at what point you want the data written
to the device.

If no Chr$(10) is included in the format string for an ivprintf call, the
characters converted are stored in the output buffer. It will require another
call to ivprintf or a call to iflush to have those characters written to
the device. This can be very useful in queuing up data to send to a device.
It can also raise I/O performance by doing a few large writes instead of
several smaller writes.

The format string for ivscanf ignores most white-space characters. Two
white-space characters that it does not ignore are newlines (Chr$(10)) and
carriage returns (Chr$(13)). These characters are treated just like normal
characters in the format string, which must match the next non-white-space
character read from the device.
50 Chapter 3

Programming with SICL
Sending I/O Commands
)RUPDWWHG�,�2�
%XIIHUV

The SICL software maintains both a read and write buffer for formatted I/O
operations. Occasionally, you may want to control the actions of these
buffers.

The write buffer is maintained by the ivprintf function. It queues
characters to send to the device so that they are sent in large blocks,
thus increasing performance. The write buffer automatically flushes when it
sends a newline character from the format string. The write buffer may
occasionally be flushed at other non-deterministic times, such as when the
buffer fills. When the write buffer flushes, it sends its contents to the device.

The read buffer is maintained by the ivscanf function. It queues the data
received from a device until it is needed by the format string. Flushing the
read buffer destroys the data in the buffer and guarantees that the next call
to ivscanf reads data directly from the device rather than data that was
previously queued.

5HODWHG�)RUPDWWHG�
,�2�)XQFWLRQV

This set of functions are related to formatted I/O in Visual Basic:

NOTE

Flushing the read buffer also includes reading all pending response data
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator
from the device.

ifread Obtains raw data directly from the read formatted
I/O buffer. This is the same buffer that ivscanf uses.

ifwrite Writes raw data directly to the write formatted I/O buffer.
This is the same buffer that ivprintf uses.

ivprintf Converts data via a format string and converts the
arguments appropriately.

ivscanf Reads data from a device/interface, converts this data
via a format string, and assigns the value to your
arguments.

iflush Flushes the formatted I/O read and write buffers. A flush
of the read buffer means that any data in the buffer is
lost. A flush of the write buffer means that any data in
the buffer is written to the session’s target address.
Chapter 3 51

Programming with SICL
Sending I/O Commands
Non-Formatted I/O

There are two non-buffered, non-formatted I/O functions called iread and
iwrite. These are raw I/O functions and do not intermix with the formatted
I/O functions. If raw I/O must be mixed, use the ifread and ifwrite
functions that have the same parameters as iread and iwrite, but
read/write raw data from/to the formatted I/O buffers.

iread�DQG�iwrite�
)XQFWLRQV

The iread function reads raw data from the device or interface specified by
the id parameter and stores the results in the location where buf is pointing.

C example:

iread(id, buf, bufsize, reason, actualcnt);

Visual Basic example:

Call iread(id, buf, bufsize, reason, actualcnt)

The iwrite function sends the data pointed to by buf to the interface or
device specified by id:

C example:

iwrite(id, buf, datalen, end, actualcnt);

Visual Basic example:

Call iwrite(id, buf, datalen, end, actualcnt)

([DPSOH��1RQ�
)RUPDWWHG�,�2��&�

This C language program illustrates using non-formatted I/O to
communicate with a multimeter over the GPIB interface. The SICL non-
formatted I/O functions iwrite and iread are used for communication.
A similar example was used to illustrate formatted I/O earlier in this chapter.

/* nonfmt.c
This example program measures AC voltage on a
multimeter and prints the results*/

#include <sicl.h>
#include <stdio.h>

main()
{

INST dvm;
char strres[20];
unsigned long actual;
52 Chapter 3

Programming with SICL
Sending I/O Commands
#if defined(__BORLANDC__) && !defined(__WIN32__)
_InitEasyWin(); /*required for Borland EasyWin

programs*/
#endif

/* Log message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen (“hpib7,16”);
itimeout (dvm, 10000);

/*Initialize dvm*/
iwrite (dvm, “*RST\n”, 5, 1, NULL);

/*Set up multimeter and take measurements*/
iwrite (dvm,”CALC:DBM:REF 50\n”,16,1,NULL);
iwrite (dvm,”MEAS:VOLT:AC? 1, 0.001\n”,23,1,NULL);

/* Read measurements */
iread (dvm, strres, 20, NULL, &actual);

/* NULL terminate result string and print the results*/
/* This technique assumes the last byte sent was a line-

feed */
if (actual){

strres[actual - 1] = (char) 0;
printf(“Result is %s\n”, strres);

}
 /* Close the multimeter session */

iclose(dvm);
/* This call is a no-op for WIN32 programs.*/
_siclcleanup();

return 0; }
Chapter 3 53

Programming with SICL
Sending I/O Commands
([DPSOH��1RQ�
)RUPDWWHG�,�2�
�9LVXDO�%DVLF�

‘ nonfmt.bas
‘ The following subroutine measures AC voltage on a
‘ multimeter and prints the results.
‘
Sub Main ()

Dim dvm As Integer
Dim strres As String * 20
Dim actual As Long

‘ Open the multimeter session
dvm = iopen(“hpib7,16”)
Call itimeout(dvm, 10000)

‘ Initialize dvm
Call iwrite(dvm,ByVal “*RST” + Chr$(10), 5, 1, 0&)

‘ Set up multimeter and take measurements
Call iwrite(dvm,ByVal “CALC:DBM:REF 50” +

Chr$(10),16,1, 0&)

 Call iwrite(dvm,ByVal “MEAS:VOLT:AC? 1, 0.001” +
Chr$(10),23,1, 0&)

‘ Read measurements
Call iread(dvm,ByVal strres, 20, 0&, actual)

‘ Print the results
Print “Result is “ + Left$(strres, actual)

‘ Close the multimeter session
Call iclose(dvm)

‘ Tell SICL to clean up for this task
Call siclcleanup

 Exit Sub

End Sub
54 Chapter 3

Programming with SICL
Handling Asynchronous Events
Handling Asynchronous Events
Asynchronous events are events that happen outside the control of your
application. These events include Service ReQuests (SRQs) and
interrupts. An SRQ is a notification that a device requires service. Both
devices and interfaces can generate SRQs and interrupts.

By default, asynchronous events are enabled. However, the library will not
generate any events until the appropriate handlers are installed in your
program.

If an application uses asynchronous events (ionsrq, ionintr), a callback
thread is created by the underlying SICL implementation to service the
asynchronous event. This thread will not be terminated until some other
thread of the application performs an ExitProcess on Windows 95 or
Windows 98 or calls iclose on Windows NT or Windows 2000.

Example declarations:

void SICLCALLBACK my_int_handler(INST id, int reason,
long sec) {

/* your code here */
}

void SICLCALLBACK my_srq_handler(INST id) {
/* your code here */

}

NOTE

SICL allows installation of SRQ and interrupt handlers in C programs, but
does not support them in Visual Basic programs.
Chapter 3 55

Programming with SICL
Handling Asynchronous Events
SRQ Handlers

The ionsrq function installs an SRQ handler. The currently installed SRQ
handler is called any time its’ corresponding device generates an SRQ.
If an interface is unable to determine which device on the interface
generated the SRQ, all SRQ handlers assigned to that interface will be
called.

Therefore, an SRQ handler cannot assume that its’ corresponding device
generated an SRQ. The SRQ handler should use the ireadstb function to
determine whether its device generated an SRQ. If two or more sessions
refer to the same device, the handlers for each of the sessions are called.

Interrupt Handlers

Two distinct steps are required for an interrupt handler to be called. First, the
interrupt handler must be installed. Second, the interrupt event or events
need to be enabled. The ionintr function installs an interrupt handler. The
isetintr function enables the interrupt event or events.

An interrupt handler can be installed with no events enabled. Conversely,
interrupt events can be enabled with no interrupt handler installed. Only
when both an interrupt handler is installed and interrupt events are enabled
will the interrupt handler be called.

Temporarily Disabling/Enabling Asynchronous
Events

To temporarily prevent all SRQ and interrupt handlers from executing, use
the iintroff function to disable all asynchronous handlers for all sessions
in the process.

To re-enable asynchronous SRQ and interrupt handlers previously disabled
by iintroff, use the iintron function. This enables all asynchronous
handlers for all sessions in the process that had been previously enabled.
These functions do not affect the isetintr values or the handlers
(ionsrq or ionintr). The default value for both functions is on.

For operating systems that support multiple threads such as Windows 95,
Windows 98, Windows 2000, and Windows NT, SRQ and interrupt handlers
execute on a separate thread (a thread created and managed by SICL). This
means a handler can be executing when the iintroff call is made. If this
occurs, the handler will continue to execute until it has completed.
56 Chapter 3

Programming with SICL
Handling Asynchronous Events
An implication of this is that the SRQ or interrupt handler may need to
synchronize its operation with the application’s primary thread. This could be
accomplished via WIN32 synchronization methods or by using SICL locks,
where the handler uses a separate session to perform its work.

Calls to iintroff/iintron may be nested, meaning that there must be
an equal number of ons and offs. Thus, calling the iintron function may
not actually re-enable interrupts.

Occasionally, you may want to suspend a process and wait until an event
occurs that causes a handler to execute. The iwaithdlr function causes
the process to suspend until an enabled SRQ or interrupt condition occurs
and the related handler executes. Once the handler completes its operation,
this function returns and processing continues.

For this function to work properly, your application must turn interrupts off
(i.e., use iintroff). The iwaithdlr function behaves as if interrupts are
enabled. Interrupts are still disabled after the iwaithdlr function has
completed.

Interrupts must be disabled if you use iwaithdlr. Use iintroff to
disable interrupts. The reason for disabling interrupts is that there may be
a race condition between the isetintr and iwaithdlr. If you only
expect one interrupt, it might come before the iwaithdlr. This may or
may not have the desired effect. For example:

...
ionintr (hpib, act_isr);
isetintr (hpib, I_INTR_INTFACT, 1);
...
iintroff ();
igpibpassctl (hpib, ba);
while (!done)

iwaithdlr (0);
iintron ();
...
Chapter 3 57

Programming with SICL
Handling Errors
Handling Errors
This section gives guidelines to handle errors in SICL, including:

n Logging SICL Error Messages
n Using Error Handlers in C
n Using Error Handlers in Visual Basic

Logging SICL Error Messages

This section shows how to use the Event Viewer (Windows 2000 and
Windows NT) or the Message Viewer (Windows 95 and Windows 98) to
log SICL error messages.

n To use the Event Viewer (Windows 2000 and Windows NT),
run the Event Viewer after you run the SICL program.

n To use the Message Viewer (Windows 95 and Windows 98),
run the Message Viewer before you run the SICL program.

8VLQJ�WKH�Event
Viewer

For Windows NT and Windows 2000, SICL logs internal messages as
Windows NT/Windows 2000 events. This includes error messages logged
by the I_ERROR_EXIT and I_ERROR_NOEXIT error handlers. While
developing your SICL application or tracking down problems, you can view
these messages by opening the the Agilent IO Libraries Control
(on the taskbar) and clicking Run Event Viewer. Both system and
application messages can be logged to the Event Viewer from SICL.
SICL messages are identified by SICL LOG or by the driver name (e.g.,
ag341i32).

8VLQJ�WKH�Message
Viewer

For Windows 95 or Windows 98, you can use the Message Viewer utility.
This utility provides a debug window to which SICL logs internal messages
during application execution, including those logged by the I_ERROR_EXIT
and I_ERROR_NOEXIT error handlers. The Message Viewer utility
provides menu selections for saving the logged messages to a file, and to
clear the message buffer. To start the Message Viewer utility, open the
Agilent IO Libraries Control (on the taskbar) and click Run
Message Viewer.
58 Chapter 3

Programming with SICL
Handling Errors
Using Error Handlers in C

When a SICL function call in a C/C++ program results in an error, it typically
returns a special value such as a NULL pointer or a non-zero error code.
SICL allows you to install an error handler for all SICL functions within a
C/C++ application to provide a convenient mechanism for handling errors.

Installing an error handler allows your application to ignore the return value,
and permits the error procedure to detect errors and recover. The error
handler is called before the function that generated the error completes.
Eerror handlers are per process (not per session or per thread).

ionerror�)XQFWLRQ The function ionerror used to install an error handler is defined as:

int ionerror (proc);
void (*proc)();

where:

void SICLCALLBACK proc (id, error);
INST id;
int error;

The routine proc is the error handler and is called whenever a SICL error
occurs. Two special reserved values of proc may be passed to the
ionerror function

This mechanism has substantial advantages over other I/O libraries,
because error handling code is located away from the center of your
application.

I_ERROR_EXIT This value installs a special error handler which will
log a diagnostic message and then terminate the
process.

I_ERROR_NOEXIT This value installs a special error handler which will
log a diagnostic message and then allow the process
to continue execution.
Chapter 3 59

Programming with SICL
Handling Errors
([DPSOH��,QVWDOOQJ�
DQ�(UURU�+DQGOHU�
�&�

Typically, error handling code is intermixed with the I/O code in an
application. However, with SICL error handling routines no special error
handling code is inserted between the I/O calls.

Instead, a single line at the top (calling ionerror) installs an error handler
that gets called any time an error occurs. In this example, a standard,
system-defined error handler is installed that logs a diagnostic message
and then exits.

/* errhand.c
This example demonstrates how a SICL error handler
can be installed. */

#include <sicl.h>
#include <stdio.h>

main ()
{

INST dvm;
double res;

 #if defined(__BORLANDC__) && !defined(__WIN32__)
_InitEasyWin(); /* Required for Borland EasyWin

programs */
#endif

ionerror (I_ERROR_EXIT);
dvm = iopen (“hpib7,16”);
itimeout (dvm, 10000);
iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?”);
iscanf (dvm, “%lf”, &res);
printf (“Result is %lf\n”, res);
iclose (dvm);

/* This call is a no-op for WIN32 programs.*/
_siclcleanup();

return 0;
}

60 Chapter 3

Programming with SICL
Handling Errors
([DPSOH��:ULWLQJ�DQ�
(UURU�+DQGOHU��&�

This is an example of writing and implementing your own error handler.

/* errhand2.c
This program shows how you can install your own error
handler*/

#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

void SICLCALLBACK err_handler (INST id, int error) {
fprintf (stderr, “Error: %s\n”, igeterrstr (error));
exit (1);

}
main () {

INST dvm;
double res;

#if defined(__BORLANDC__) && !defined(__WIN32__)
_InitEasyWin(); /* Required for Borland EasyWin

programs */
#endif

ionerror (err_handler);
dvm = iopen (“hpib7,16”);
itimeout (dvm, 10000);
iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?”);
iscanf (dvm, “%lf”, &res);
printf (“Result is %lf\n”, res);
iclose (dvm);

/* This call is a no-op for WIN32 programs*/
_siclcleanup();

 return 0;
 }

NOTE

If an error occurs in iopen, the id passed to the error handler may not be
valid.
Chapter 3 61

Programming with SICL
Handling Errors
Using Error Handlers in Visual Basic

Typically in an application, error handling code is intermixed with the I/O
code. However, by using Visual Basic’s error handling capabilities, no
special error handling code need be inserted between the I/O calls. Instead,
a single line at the top (On Error GoTo) installs an error handler in the
subroutine that gets called any time a SICL or Visual Basic error occurs.

When a SICL call results in an error, the error is communicated to Visual
Basic by setting Visual Basic’s Err variable to the SICL error code and
Error$ is set to a human-readable string that corresponds to Err. This
allows SICL to be integrated with Visual Basic’s built-in error handling
capabilities. SICL programs written in Visual Basic can set up error handlers
with the Visual Basic On Error statement.

The SICL ionerror function for C programs is not used with Visual Basic.
Similarly, the I_ERROR_EXIT and I_ERROR_NOEXIT default handlers used
in C programs are not defined for Visual Basic.

When an error occurs within a Visual Basic program, the default behavior is
to display a dialog box indicating the error and then halt the program. If you
want your program to intercept errors and keep executing, you will need to
install an error handler with the On Error statement. For example:

On Error GoTo MyErrorHandler

This will cause your program to jump to code at the label MyErrorHandler
when an error occurs. Note that the error handling code must exist within the
subroutine or function where the error handler was declared.

If you do not want to call an error handler or have your application terminate
when an error occurs, you can use the On Error statement to tell Visual
Basic to ignore errors. For example:

On Error Resume Next

This tells Visual Basic to proceed to the statement following the statement
in which an error occurs. In this case, you could call the Visual Basic Err
function in subsequent lines to find out which error occurred.

Visual Basic error handlers are only active within the scope of the subroutine
or function in which they are declared. Each Visual Basic subroutine or
function that wants an error handler must declare its own error handler. This
is different than the way SICL error handlers installed with ionerror work
in C programs. An error handler installed with ionerror remains active
within the scope of the whole C program.
62 Chapter 3

Programming with SICL
Handling Errors
Example: (UURU�
+DQGOHUV��9LVXDO�
%DVLF�

In this Visual Basic example, the error handler displays the error message
in a dialog box and then terminates the program. When an error occurs, the
Visual Basic Err variable is set to the error code and the Error$ variable is
set to the error message string for the error that occurred.

‘ errhand.bas
‘
Sub Main()

Dim dvm As Integer
Dim res As Double

On Error GoTo ErrorHandler

dvm = iopen(“hpib7,16”)
Call itimeout(dvm, 10000)
argcount = ivprintf(dvm, “MEAS:VOLT:DC?” + Chr$(10))
argcount = ivscanf(dvm, “%lf”, res)
MsgBox “Result is “ + Format(res)
iclose (dvm)

 ‘ Tell SICL to clean up for this task
Call siclcleanup
End

ErrorHandler:
‘ Display the error message

MsgBox “*** Error : “ + Error$, MB_ICON_EXCLAMATION
‘ Tell SICL to clean up for this task
Call siclcleanup
End

End Sub
Chapter 3 63

Programming with SICL
Using Locks
Using Locks
Because SICL allows multiple sessions on the same device or interface,
the action of opening does not mean you have exclusive use. In some cases
this is not an issue, but should be a consideration if you are concerned with
program portability.

What are Locks?

The SICL ilock function is used to lock an interface or device. The SICL
iunlock function is used to unlock an interface or device.

Locks are performed on a per-session (device, interface, or commander)
basis. Also, locks can be nested. The device or interface only becomes
unlocked when the same number of unlocks are done as the number of
locks. Doing an unlock without a lock returns the error I_ERR_NOLOCK.

What does it mean to lock? Locking an interface (from an interface session)
restricts other device and interface sessions from accessing this interface.
Locking a device restricts other device sessions from accessing this device;
however, other interface sessions may continue to access the interface for
this device. Locking a commander (from a commander session) restricts
other commander sessions from accessing this commander.

Not all SICL routines are affected by locks. Some routines that set or return
session parameters never touch the interface hardware and therefore work
without locks. For information on using locks in multi-threaded SICL
applications over LAN, see Chapter 8 - Using SICL with LAN.

CAUTION

It is possible for an interface session to access a device locked from a
device session. In such a case, data may be lost from the device
session that was underway. For example, Agilent Visual Engineering
Environment (VEE) applications use SICL interface sessions. Therefore,
I/O operations from VEE applications can supercede any device session
that has a lock on a particular device.
64 Chapter 3

Programming with SICL
Using Locks
Lock Actions

If a session tries to perform any SICL function that obeys locks on an
interface or device currently locked by another session, the default action is
to suspend the call until the lock is released or, if a timeout is set, until the
call times out.

This action can be changed with the isetlockwait function (see Chapter
11 - SICL Language Reference for a description). If the isetlockwait
function is called with the flag parameter set to 0 (zero), the default action is
changed. Rather than causing SICL functions to suspend, an error will be
returned immediately.

To return to the default action, to suspend and wait for an unlock, call the
isetlockwait function with the flag set to any non-zero value.

Locking in a Multi-User Environment

In a multi-user/multi-process environment where devices are being shared,
it is a good idea to use locking to ensure exclusive use of a particular device
or set of devices. However, as explained in “Using Locks”, an interface
session can access a device locked from a device session.

In general, it is not good programming practice to lock a device at the
beginning of an application and unlock it at the end. This can result in
deadlocks or long waits by others who want to use the resource.

The recommended procedure to use locking is per transaction. Per
transaction means that you lock before you setup the device, then unlock
after all desired data have been acquired. When sharing a device, you
cannot assume the state of the device, so the beginning of each transaction
should have any setup needed to configure the device or devices to be
used.
Chapter 3 65

Programming with SICL
Using Locks
Example: Locking (C Program)

/* locking.c
This example shows how device locking can be
used to gain exclusive access to a device*/

#include <sicl.h>
#include <stdio.h>

main()
{

INST dvm;

char strres[20];
unsigned long actual;

#if defined(__BORLANDC__) && !defined(__WIN32__)
_InitEasyWin(); /* required for Borland EasyWin

programs */
#endif

/* Log message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen (“hpib7,16”);
itimeout (dvm, 10000);

/* Lock the multimeter device to prevent access
 from other applications*/

ilock(dvm);

/* Take a measurement */
iwrite (dvm, “MEAS:VOLT:DC?\n”, 14, 1, NULL);

/* Read the results */
iread (dvm, strres, 20, NULL, &actual);

/* Release the multimeter device for use by others */
iunlock(dvm);
/* NULL terminate result string and print results */
/* This technique assumes the last byte sent was a

line-feed */
66 Chapter 3

Programming with SICL
Using Locks
if (actual) {
strres[actual - 1] = (char) 0;
printf(“Result is %s\n”, strres);

}

/* Close the multimeter session */
iclose(dvm);

/* This call is a no-op for WIN32 programs.*/
_siclcleanup();

return 0;
}

Example: Locking (Visual Basic)
‘ locking.bas
Sub Main ()

Dim dvm As Integer
Dim strres As String * 20
Dim actual As Long

‘ Install an error handler
On Error GoTo ErrorHandler

‘ Open the multimeter session
dvm = iopen(“hpib7,16”)
Call itimeout(dvm, 10000)

‘ Lock the multimeter device to prevent access from other
applications

Call ilock(dvm)

‘ Take a measurement
Call iwrite(dvm,ByVal “MEAS:VOLT:DC?” + Chr$(10), 14,

1, 0&)

‘ Read the results
Call iread(dvm,ByVal strres, 20, 0&, actual)

‘ Release the multimeter device for use by others
Call iunlock(dvm)
Chapter 3 67

Programming with SICL
Using Locks
‘ Display the results
MsgBox “Result is “ + Left$(strres, actual)

‘ Close the multimeter session
Call iclose(dvm)

‘ Tell SICL to clean up for this task
Call siclcleanup

 End

ErrorHandler:
‘ Display the error message.

MsgBox “*** Error : “ + Error$
‘ Tell SICL to clean up for this task

Call siclcleanup

 End

End Sub
68 Chapter 3

4

Using SICL with GPIB
69

Using SICL with GPIB

This chapter shows how to open a communications session and
communicate with GPIB devices, interfaces, or controllers. The example
programs in this chapter are also provided in the C\SAMPLES\MISC
(for C/C++) or VB\SAMPLES\MISC (for Visual Basic) of the IO Libraries
base directory. This chapter includes:

n Introduction
n Using GPIB Device Sessions
n Using GPIB Interface Sessions
n Using GPIB Commander Sessions
n Writing GPIB Interrupt Handlers
70 Chapter 4

Using SICL with GPIB
Introduction
Introduction
This section provides an introduction to using SICL with the GPIB interface,
including:

n Selecting a GPIB Communications Session
n SICL GPIB Functions

Selecting a GPIB Communications Session

When you have determined the GPIB system is set up and operating
correctly, you can start programming with the SICL functions. First, you
must determine what type of communications session to use.

The three types of communications sessions are device, interface, and
commander. To use a device session, see “Using GPIB Device Sessions”.
To use an interface session, see “Using GPIB Interface Sessions”. To use
a commander session, see “Using GPIB Commander Sessions”.

SICL GPIB Functions

Function Name Action

igpibatnctl Sets or clears the ATN line

igpibbusaddr Changes bus address

igpibbusstatus Returns requested bus data

igpibgett1delay Returns the current T1 setting for the interface

igpibllo Sets bus in Local Lockout Mode

igpibpassctl Passes active control to specified address

igpibppoll Performs a parallel poll on the bus

igpibppollconfig Configures device for PPOLL response

igpibppollresp Sets PPOLL state

igpibrenctl Sets or clears the REN line

igpibsendcmd Sends data with ATN line set

igpibsett1delay Sets the T1 delay value for this interface
Chapter 4 71

Using SICL with GPIB
Using GPIB Device Sessions
Using GPIB Device Sessions
A device session allows you direct access to a device without knowing the
type of interface to which it is connected. The specifics of the interface are
hidden from the user.

Addressing GPIB Devices

To create a device session, specify the interface logical unit or symbolic
name and a particular device logical address in the addr parameter of the
iopen function. The interface logical unit and symbolic name are set by
running the IO Config utility. To open IO Config, open the Agilent
IO Libraries Control (on the taskbar) and click Run IO Config.
See the Agilent IO Libraries Installation and Configuration Guide for
Windows for information on the IO Config utility.

3ULPDU\�DQG�
6HFRQGDU\�
$GGUHVVHV

SICL supports both primary and secondary addressing on GPIB interfaces.
The primary address must be between 0 and 30 and the secondary address
must be between 0 and 30. The primary and secondary addresses
correspond to the GPIB primary and secondary addresses. Some example
GPIB addresses for device sessions are:

9;,�0DLQIUDPH�
&RQQHFWLRQV

For connections to a VXI mainframe via an E1406 Command Module (or
equivalent), the primary address passed to iopen corresponds to the
address of the Command Module and the secondary address must be
specified to select a specific instrument in the card cage.

Secondary addresses of 0, 1, 2, ... 30 correspond to VXI instruments at
logical addresses of 0, 8, 16, ... 240, respectively. See “GPIB Device
Session Examples” in this chapter for an example program to communicate
with a VXI mainframe via the GPIB interface.

GPIB,7 A device address corresponding to the device at
primary address 7

hpib,3,2 A device address corresponding to the device at
primary address 3, secondary address 2
72 Chapter 4

Using SICL with GPIB
Using GPIB Device Sessions
Examples to open a device session with an GPIB device at bus address 16
follow.

C example:

INST dmm;
dmm = iopen (“hpib,16”);

Visual Basic example:

Dim dmm As Integer
dmm = iopen (“hpib,16”)

SICL Function Support for GPIB Device Session

This section shows how some SICL functions are implemented for GPIB
device sessions. The data transfer functions work only when the GPIB
interface is the Active Controller. Passing control to another GPIB device
causes this device to lose active control.

iwrite Causes all devices to untalk and unlisten. It sends this
controller’s talk address followed by unlisten and then the listen
address of the corresponding device session. Then, it sends the
data over the bus.

iread Causes all devices to untalk and unlisten. It sends an unlisten,
then sends this controller’s listen address followed by the talk
address of the corresponding device session. Then, it reads the
data from the bus.

ireadstb Performs a GPIB serial poll (SPOLL).

itrigger Performs an addressed GPIB group execute trigger (GET).

iclear Performs a GPIB selected device clear (SDC) on the device
corresponding to this session.
Chapter 4 73

Using SICL with GPIB
Using GPIB Device Sessions
*3,%�'HYLFH�
6HVVLRQV�DQG�
6HUYLFH�5HTXHVWV

There are no device-specific interrupts for the GPIB interface, but GPIB
device sessions do support Service Requests (SRQs). On the GPIB
interface, when one device issues an SRQ, the library informs all GPIB
device sessions that have SRQ handlers installed (see ionsrq in Chapter
11 - SICL Language Reference).

This is an artifact of how GPIB handles the SRQ line. The interface cannot
distinguish which device requested service. Therefore, the library acts as if
all devices require service. The SRQ handler can retrieve the device’s
status byte by using the ireadstb function. For more information, see
“Writing GPIB Interrupt Handlers” in this chapter.

Example: GPIB Device Session (C)

This example opens two GPIB communications sessions with VXI devices
(via a VXI Command Module). Then, a scan list is sent to a switch and
measurements are taken by the multimeter every time a switch is closed.

/* hpibdev.c
This example program sends a scan list to a switch
and, while looping, closes channels and takes
measurements. */

#include <sicl.h>
#include <stdio.h>

main()
{

INST dvm;
INST sw;

double res;
int i;

#if defined(__BORLANDC__) && !defined(__WIN32__)
_InitEasyWin(); /* Required for Borland EasyWin

programs */
#endif

/* Log message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter and switch sessions*/
dvm = iopen (“hpib7,9,3”);
74 Chapter 4

Using SICL with GPIB
Using GPIB Device Sessions
sw = iopen (“hpib7,9,14”);
itimeout (dvm, 10000);
itimeout (sw, 10000);

/*Set up trigger*/
iprintf (sw, “TRIG:SOUR BUS\n”);

/*Set up scan list*/
iprintf (sw,”SCAN (@100:103)\n”);
iprintf (sw,”INIT\n”);

for (i=1;i<=4;i++)
{

/* Take a measurement */
iprintf (dvm,”MEAS:VOLT:DC?\n”);

/* Read the results */
iscanf (dvm,”%lf”,&res);

/* Print the results */
printf (“Result is %lf\n”,res);

/* Trigger to close channel */
iprintf (sw, “TRIG\n”);

}
/* Close the multimeter and switch sessions */
iclose (dvm);
iclose (sw);

/* This call is a no-op for WIN32 programs*/
_siclcleanup();

return 0;
}

Chapter 4 75

Using SICL with GPIB
Using GPIB Device Sessions
Example: GPIB Device Session (Visual Basic)

This example opens two GPIB communications sessions with VXI devices
(via a VXI Command Module). Then, a scan list is sent to a switch and
measurements are taken by the multimeter every time a switch is closed.

‘hpibdev.bas
‘ This example program sends a scan list to a switch and
‘ while looping closes channels and takes measurements.

Sub Main ()
Dim dvm As Integer
Dim sw As Integer
Dim res As Double
Dim i As Integer
Dim argcount As Integer

‘ Open the multimeter and switch sessions
dvm = iopen(“hpib7,9,3”)
sw = iopen(“hpib7,9,14”)
Call itimeout(dvm, 10000)
Call itimeout(sw, 10000)

‘ Set up trigger
argcount = ivprintf(sw, “TRIG:SOUR BUS” + Chr$(10))

‘ Set up scan list
argcount = ivprintf(sw, “SCAN (@100:103)” + Chr$(10))

argcount = ivprintf(sw, “INIT” + Chr$(10))

‘ Display form1 and print voltage measurements
form1.Show

For i = 1 To 4
‘ Take a measurement
argcount = ivprintf(dvm, “MEAS:VOLT:DC?” + Chr$(10))

‘ Read the results
argcount = ivscanf(dvm, “%lf”, res)

‘ Print the results
form1.Print “Result is “ + Format(res)
76 Chapter 4

Using SICL with GPIB
Using GPIB Device Sessions
‘ Trigger to close channel
argcount = ivprintf(sw, “TRIG” + Chr$(10))

Next i

‘ Close the voltmeter session
Call iclose(dvm)

‘ Close the switch session
Call iclose(sw)

‘ Tell SICL to clean up for this task
Call siclcleanup

End Sub
Chapter 4 77

Using SICL with GPIB
Using GPIB Interface Sessions
Using GPIB Interface Sessions
Interface sessions allow direct, low-level control of the specified interface, but
the programmer must provide all bus maintenance settings for the interface
and must know the technical details about the interface. Also,
when using interface sessions, interface-specific functions must be used.
Thus, the program cannot be used on other interfaces and becomes less
portable.

Addressing GPIB Interfaces

To create an interface session on your GPIB system, specify the particular
interface logical unit or symbolic name in the addr parameter of the iopen
function. The interface logical unit and symbolic name are set by running
the IO Config utility. To open IO Config, open the Agilent IO
Libraries Control (on the taskbar) and click Run IO Config. See
the Agilent IO Libraries Installation and Configuration Guide for Windows for
information on the IO Config utility. Example interface addresses follow.

These examples open an interface session with the GPIB interface.

C example:

INST hpib;
hpib = iopen (“hpib”);

Visual Basic example:

Dim hpib As Integer
hpib = iopen (“hpib”)

GPIB An interface symbolic name.

hpib An interface symbolic name.

gpib2 An interface symbolic name.

IEEE488 An interface symbolic name.

7 An interface logical unit.
78 Chapter 4

Using SICL with GPIB
Using GPIB Interface Sessions
SICL Function Support for GPIB Interface
Sessions

This section describes how some SICL functions are implemented for GPIB
interface sessions.

*3,%�,QWHUIDFH�
6HVVLRQV�,QWHUUXSWV

There are specific interface session interrupts that can be used. See
isetintr in Chapter 11 - SICL Language Reference for information on
the interface session interrupts for GPIB. Also, see “Writing GPIB Interrupt
Handlers” in this chapter for more information.

*3,%�,QWHUIDFH�
6HVVLRQV�DQG�
6HUYLFH�5HTXHVWV

GPIB interface sessions support Service Requests (SRQs). On the GPIB
interface, when one device issues an SRQ, the library will inform all GPIB
interface sessions that have SRQ handlers installed (see ionsrq in
Chapter 11 - SICL Language Reference). For more information, see
“Writing GPIB Interrupt Handlers” in this chapter.

iwrite Sends the specified bytes directly to the interface without
performing any bus addressing. The iwrite function always
clears the ATN line before sending any bytes, thus ensuring
that the GPIB interface sends the bytes as data, not as
command bytes.

iread Reads the data directly from the interface without performing
any bus addressing.

itrigger Performs a broadcast GPIB group execute trigger (GET)
without additional addressing. Use this function with
igpibsendcmd to send a UNL followed by the appropriate
device addresses. This will allow the itrigger function to be
used to trigger multiple GPIB devices simultaneously.

Passing the I_TRIG_STD value to the ixtrig function also
causes a broadcast GPIB group execute trigger (GET). There
are no other valid values for the ixtrig function.

iclear Performs a GPIB interface clear (pulses IFC), which resets the
interface.
Chapter 4 79

Using SICL with GPIB
Using GPIB Interface Sessions
Example: GPIB Interface Session (C)

/* hpibstat.c
This example retrieves and displays GPIB
bus status information. */

#include <stdio.h>
#include <sicl.h>

main()
{

INST id; /* session id */
int rem; /* remote enable */
int srq; /* service request */
int ndac; /* not data accepted */
int sysctlr; /* system controller */
int actctlr; /* active controller */
int talker; /* talker */
int listener; /* listener */
int addr; /* bus address */

#if defined(__BORLANDC__) && !defined(__WIN32__)
 _InitEasyWin(); /* Required for Borland EasyWin programs */
#endif

/* exit process if SICL error detected */
ionerror(I_ERROR_EXIT);

/* open GPIB interface session */
id = iopen(“hpib”);

itimeout (id, 10000);

/* retrieve GPIB bus status */
igpibbusstatus(id, I_GPIB_BUS_REM, &rem);
igpibbusstatus(id, I_GPIB_BUS_SRQ, &srq);
igpibbusstatus(id, I_GPIB_BUS_NDAC, &ndac);
igpibbusstatus(id, I_GPIB_BUS_SYSCTLR, &sysctlr);
igpibbusstatus(id, I_GPIB_BUS_ACTCTLR, &actctlr);
igpibbusstatus(id, I_GPIB_BUS_TALKER, &talker);
igpibbusstatus(id, I_GPIB_BUS_LISTENER, &listener);
igpibbusstatus(id, I_GPIB_BUS_ADDR, &addr);
80 Chapter 4

Using SICL with GPIB
Using GPIB Interface Sessions
/* display bus status */
printf(“%-5s%-5s%-5s%-5s%-5s%-5s%-5s%-5s\n”,
“REM”, “SRQ”,“NDC”, “SYS”, “ACT”, “TLK”, “LTN”,
“ADDR”);printf(“%2d%5d%5d%5d%5d%5d%5d%6d\n”,
rem, srq, ndac, sysctlr, actctlr, talker, listener,
addr);

 /* This call is no-op for WIN32 programs.*/

_siclcleanup();

return 0;
}

Example: GPIB Interface Session (Visual Basic)

‘hpibstat.bas
‘ The following example retrieves and displays
‘ GPIB bus status information.
Sub main ()

Dim id As Integer ‘ session id
Dim remen As Integer ‘ remote enable
Dim srq As Integer ‘ service request
Dim ndac As Integer ‘ not data accepted
Dim sysctlr As Integer‘ system controller
Dim actctlr As Integer‘ active controller
Dim talker As Integer ‘ talker
Dim listener As Integer‘ listener
Dim addr As Integer ‘ bus address
Dim header As String ‘ report header
Dim values As String ‘ report output

‘ Open GPIB interface session
id = iopen(“hpib7”)
Call itimeout(id, 10000)

‘ Retrieve GPIB bus status
Call igpibbusstatus(id, I_GPIB_BUS_REM, remen)
Call igpibbusstatus(id, I_GPIB_BUS_SRQ, srq)
Call igpibbusstatus(id, I_GPIB_BUS_NDAC, ndac)
Call igpibbusstatus(id, I_GPIB_BUS_SYSCTLR, sysctlr)
Call igpibbusstatus(id, I_GPIB_BUS_ACTCTLR, actctlr)
Call igpibbusstatus(id, I_GPIB_BUS_TALKER, talker)
Call igpibbusstatus(id, I_GPIB_BUS_LISTENER, listener)
Chapter 4 81

Using SICL with GPIB
Using GPIB Interface Sessions
Call igpibbusstatus(id, I_GPIB_BUS_ADDR, addr)

‘ Display form1 and print results
form1.Show
form1.Print “REM”; Tab(7); “SRQ”; Tab(14); “NDC”;
Tab(21);“SYS”; Tab(28); “ACT”; Tab(35); “TLK”;
Tab(42); “LTN”; Tab(49);“ADDR” form1.Print remen;
Tab(7); srq; Tab(14); ndac; Tab(21);sysctlr;
Tab(28); actctlr; Tab(35); talker; Tab(42);
listener; Tab(49); addr

‘ Tell SICL to clean up for this task
Call siclcleanup

End Sub
82 Chapter 4

Using SICL with GPIB
Using GPIB Commander Sessions
Using GPIB Commander Sessions
Commander sessions are intended for use on GPIB interfaces that are not the
active controller. In this mode, a computer that is not the controller is acting
like a device on the GPIB bus. In a commander session, the data transfer
routines only work when the GPIB interface is not active controller.

Addressing GPIB Commanders

To create a commander session on your GPIB interface, specify the
particular interface logical unit or symbolic name in the addr parameter
followed by a comma and the string cmdr in the iopen function.

The interface logical unit and symbolic name are set by running the IO
Config utility. To open IO Config, open the Agilent IO Libraries
Control (on the taskbar) and click Run IO Config. See the Agilent IO
Libraries Installation and Configuration Guide for Windows for information on
the IO Config utility. Example GPIB addresses for commander sessions
follow.

These examples open a commander session with the GPIB interface.

C example:

INST hpib;
hpib = iopen (“hpib,cmdr”);

Visual Basic example:

Dim hpib As Integer
hpib = iopen (“hpib,cmdr”)

GPIB,cmdr A commander session with the GPIB interface.

hpib2,cmdr A commander session with the hpib2 interface.

7,cmdr A commander session with the interface at logical unit 7.
Chapter 4 83

Using SICL with GPIB
Using GPIB Commander Sessions
SICL Function Support for GPIB Commander
Sessions

This section describes how some SICL functions are implemented for GPIB
commander sessions.

*3,%�&RPPDQGHU�
6HVVLRQV�,QWHUUXSWV

There are specific commander session interrupts that can be used. See
isetintr in Chapter 11 - SICL Language Reference for information on
commander session interrupts. Also see “Writing GPIB Interrupt Handlers”
for more information.

iwrite If the interface has been addressed to talk, the data is written
directly to the interface. If the interface has not been addressed
to talk, it will wait to be addressed to talk before writing the data.

iread If the interface has been addressed to listen, the data is read
directly from the interface. If the interface has not been
addressed to listen, it will wait to be addressed to listen before
reading the data.

isetstb Sets the status value that will be returned on a ireadstb call
(that is, when this device is SPOLLed). Bit 6 of the status byte
has a special meaning. If bit 6 is set, the SRQ line will be set. If
bit 6 is clear, the SRQ line will be cleared.
84 Chapter 4

Using SICL with GPIB
Writing GPIB Interrupt Handlers
Writing GPIB Interrupt Handlers
This section provides some additional information for writing interrupt
handlers for GPIB applications in SICL.

Multiple I_INTR_GPIB_TLAC Interrupts

This interrupt occurs whenever a device has been addressed to talk or
untalk, or a device has been addressed to listen or unlisten. Due to
hardware limitations, your SICL interrupt handler may be called twice in
response to any of these events.

Your GPIB application should be written to handle this situation gracefully.
This can be done by keeping track of the current talk/listen state of the
interface card and ignoring the interrupt if the state does not change. For
more information, see the secval parameter definition of the isetintr
function in Chapter 11 - SICL Language Reference.

Handling SRQs from Multiple GPIB Instruments

GPIB is a multiple-device bus and SICL allows multiple device sessions
open at the same time. On the GPIB interface, when one device issues a
Service Request (SRQ), the library will inform all GPIB device sessions that
have SRQ handlers installed (see ionsrq in Chapter 11 - SICL Language
Reference).

This is an artifact of how GPIB handles the SRQ line. The underlying GPIB
hardware does not support session-specific interrupts like VXI does.
Therefore, your application must reflect the nature of the GPIB hardware
if you expect to reliably service SRQs from multiple devices on the same
GPIB interface.

It is vital that you never exit an SRQ handler without first clearing the SRQ
line. If the multiple devices are all controlled by the same process, the
easiest technique is to service all devices from one handler. The pseudo-
code for this follows. This algorithm loops through all the device sessions
and does not exit until the SRQ line is released (not asserted).

while (srq_asserted) {
serial_poll (device1)
if (needs_service) service_device1
serial_poll (device2)
if (needs_service) service_device2
Chapter 4 85

Using SICL with GPIB
Writing GPIB Interrupt Handlers
...
check_SRQ_line

}

([DPSOH��6HUYLFLQJ�
5HTXHVWV��&�

This example shows a SICL program segment that implements this
algorithm. Checking the state of the SRQ line requires an interface session.
Only one device session needs to execute ionsrq because that handler is
invoked regardless of which instrument asserted the SRQ line. Assuming
IEEE-488 compliance, an ireadstb is all that is needed to clear the
device’s SRQ.

Since the program cannot leave the handler until all devices have released
SRQ, it is recommended that the handler do as little as possible for each
device. The previous example assumed that only one iscanf was needed
to service the SRQ. If lengthy operations are needed, a better technique is
to perform the ireadstb and set a flag in the handler. Then, the main
program can test the flags for each device and perform the more lengthy
service.

Even if the different device sessions are in different processes, it is still
important to stay in the SRQ handler until the SRQ line is released.
However, it is not likely that a process which only knows about Device A
can do anything to make Device B release the SRQ line.

In such a configuration, a single unserviced instrument can effectively
disable SRQs for all processes attempting to use that interface. Again,
this is a hardware characteristic of GPIB. The only way to ensure true
independence of multiple GPIB processes is to use multiple GPIB
interfaces.

/* Must be global */
INST id1, id2, bus;

void handler (dummy)
INST dummy;
{

int srq_asserted = 1;
unsigned char statusbyte;

/* Service all sessions in turn until no one is
 requesting service */

while (srq_asserted) {
ireadstb(id1, &statusbyte);
if (statusbyte & SRQ_BIT)
{

86 Chapter 4

Using SICL with GPIB
Writing GPIB Interrupt Handlers
/* Actual service actions depend upon application */
iscanf(id1, “%f”, &data1);

}
ireadstb(id2, &statusbyte);
if (statusbyte & SRQ_BIT){
iscanf(id2, “%f”, &data2);
}
igpibbusstatus(bus, I_GPIB_BUS_SRQ, &srq_asserted);
}

}

main() {
.
.
/* Device sessions for instruments */
id1 = iopen(“hpib, 17”);
id2 = iopen(“hpib, 18”);

/* Interface session for SRQ test */
bus = iopen(“hpib”);

/* Only one handler needs to be installed */
ionsrq(id1, handler);
.
.
Chapter 4 87

Using SICL with GPIB
Writing GPIB Interrupt Handlers
Notes:
88 Chapter 4

5

Using SICL with GPIO
89

Using SICL with GPIO

This chapter shows how to open an interface communications session and
communicate with an instrument over a GPIO connection. The example
programs in this chapter are also provided in the C\SAMPLES\MISC
(for C/C++) and VB\SAMPLES\MISC (for Visual Basic) subdirectories.
This chapter includes:

n Introduction
n Using GPIO Interface Sessions
90 Chapter 5

Using SICL with GPIO
Introduction
Introduction
This section provides an introduction to using SICL with the GPIO interface,
including:

n Selecting a GPIO Communications Session
n SICL GPIO Functions

Selecting a GPIO Communications Session

GPIO is a parallel interface that is flexible and allows a variety of custom
connections. Although GPIO typically requires more time to configure than
GP-IB, the speed and versatility of GPIO make it the perfect choice for many
tasks.

Once you have configured your system for GPIO communications, you can
start programming with the SICL functions. If you have programmed GPIO
before, you will probably want to open the interface and start sending
commands.

With GPIB, there can be multiple devices on a single interface. These
interfaces support a connection called a device session. With GPIO, only
one device is connected to the interface. Therefore, communication with
GPIO devices must be using an interface session.

SICL GPIO Functions

NOTE

GPIO is only supported with SICL on Windows 95, Windows 98,
Windows 2000, and Windows NT. GPIO is not supported with SICL
via LAN.

Function Name Action

igpioctrl Sets the following characteristics of the GPIO
interface:
Chapter 5 91

Using SICL with GPIO
Introduction
Request Characteristic Settings

I_GPIO_AUTO_HDSK Auto-Handshake mode 1 or 0

I_GPIO_AUX Auxiliary Control lines 16-bit mask

I_GPIO_CHK_PSTS Check PSTS before
read/write

1 or 0

I_GPIO_CTRL Control lines I_GPIO_CTRL_CTL0
I_GPIO_CTRL_CTL1

I_GPIO_DATA Data Output lines 8-bit or 16-bit mask

I_GPIO_PCTL_DELAY PCTL delay time 0-7

I_GPIO_POLARITY Logical polarity 0-31

I_GPIO_READ_CLK Data input latching See Chapter 11 - SICL
Language Reference

I_GPIO_READ_EOI END termination pattern I_GPIO_EOI_NONE or
8-bit or 16-bit mask

I_GPIO_SET_PCTL Start PCTL handshake 1

igpiogetwidth Returns the current width (in bits) of the GPIO data
ports.

igpiosetwidth Sets the width (in bits) of the GPIO data ports. Either
8 or 16.
92 Chapter 5

Using SICL with GPIO
Introduction
igpiostat Gets the following information about the GPIO
interface:

Request Characteristic Value

I_GPIO_CTRL Control Lines I_GPIO_CTRL_CTL0
I_GPIO_CTRL_CTL1

I_GPIO_DATA Data In lines 16-bit mask

I_GPIO_INFO GPIO information I_GPIO_AUTO_HDSK
I_GPIO_CHK_PSTS
I_GPIO_EIR
I_GPIO_ENH_MODE
I_GPIO_PSTS
I_GPIO_READY

I_GPIO_READ_EOI END termination pattern I_GPIO_EOI_NONE
or 8-bit or 16-bit mask

I_GPIO_STAT Status lines I_GPIO_STAT_STI0
I_GPIO_STAT_STI1
Chapter 5 93

Using SICL with GPIO
Using GPIO Interface Sessions
Using GPIO Interface Sessions
GPIO Interface sessions are used for GPIO data transfer, interrupt, status,
and control operations. When communicating with a GPIO interface
session, the programmer must specify the interface name.

Addressing GPIO Interfaces

To create an interface session on GPIO, specify the interface logical unit or
symbolic name in the addr parameter of the iopen function. The interface
logical unit and symbolic name are defined by running the IO Config
utility. To open IO Config, click the Agilent IO Libraries Control
(on the taskbar) and click Run IO Config. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for information on
IO Config. Some example addresses for GPIO interface sessions are:

This example opens an interface session with the GPIO interface.

INST intf;
intf = iopen (“gpio”);

SICL Function Support with GPIO Interface
Sessions

This section describes how some SICL functions are implemented for
GPIO interface sessions.

gpio An interface symbolic name

12 An interface logical unit
94 Chapter 5

Using SICL with GPIO
Using GPIO Interface Sessions
*3,2�,QWHUIDFH�
6HVVLRQV�6,&/�
)XQFWLRQV

*3,2�,QWHUIDFH�
6HVVLRQV�,QWHUUXSWV

There are specific interface session interrupts that can be used. See
isetintr in Chapter 11 - SICL Language Reference for information on the
interface session interrupts for GPIO.

iwrite,
iread

The size parameters for non-formatted I/O functions are always
byte counts, regardless of the current data width of the
interface.

iprintf,
iscanf

All formatted I/O functions work with GPIO. When formatted
I/O is used with 16-bit data widths, the formatting buffers
reassemble the data as a stream of bytes. On Windows, these
bytes are ordered: high-low-high-low... Because of this
“unpacking” operation, 16-bit data widths may not be
appropriate for formatted I/O operations. For iscanf
termination, an END value must be specified using
igpioctrl. See Chapter 11 - SICL Language Reference.

itermchr For 16-bit data widths, only low (least-significant) byte is used.

ixtrig Provides a method of triggering using either the CTL0 or CTL1
control lines. This function pulses the specified control line for
approximately 1 or 2 µsec. The following constants are defined:
I_TRIG_STD Pulse CTL0 line
I_TRIG_GPIO_CTL0 Pulse CTL0 line
I_TRIG_GPIO_CTL1 Pulse CTL1 line

itrigger Same as ixtrig (I_TRIG_STD). Pulses the CTL0 control line.

iclear Pulses the P_RESET line for at least 12 µsec, aborts any
pending writes, discards any data in the receive buffer, and
resets any error conditions. Optionally, clears the Data Out
port, depending on the configuration specified via IO Config.

ionsrq Installs a service request handler for this session. The concept
of service request (SRQ) originates from GPIB. On a GPIB
interface, a device can request service from the controller by
asserting a line on the interface bus. On GPIO, the EIR line is
assumed to be the service request line.

ireadstb Although ireadstb is for device sessions only, since GPIO
has no device sessions, ireadstb is allowed with GPIO
interface sessions. The interface status byte has bit 6 set if EIR
is asserted. Otherwise, the status byte is 0 (zero). This allows
normal SRQ programming techniques in GPIO SRQ handlers.
Chapter 5 95

Using SICL with GPIO
Using GPIO Interface Sessions
Example: GPIO Interface Session (C)

/* gpiomeas.c
This program:
- Creates a GPIO session with timeout and error checking
- Signals the device with a CTL0 pulse
- Reads the device’s response using formatted I/O */

#include <sicl.h>

main()
{

INST id; /* interface session id */
float result; /* data from device */

#if defined (__BORLANDC__) && !defined (__WIN32__)
_InitEasyWin(); /* required for Borland EasyWin programs */
#endif

/* log message and exit program on error */
ionerror(I_ERROR_EXIT);

/* open GPIO interface session, with 3 sec timeout*/
id = iopen(“gpio”);
itimeout(id, 3000);

/* setup formatted I/O configuration */
igpiosetwidth(id, 8);
igpioctrl(id, I_GPIO_READ_EOI, ‘\n’);

/* monitor the device’s PSTS line */
igpioctrl(id, I_GPIO_CHK_PSTS, 1);

/* signal the device to take a measurement */
itrigger(id);

/* get the data */
iscanf(id, “%f%*t”, &result);
printf(“Result = %f\n”, result);
/* This call is a no-op for WIN32 applications.*/
_siclcleanup();

/* close session */
iclose (id); }
96 Chapter 5

Using SICL with GPIO
Using GPIO Interface Sessions
Example: GPIO Interface Session (Visual Basic)

‘ This program:
‘ - Creates a GPIO session with timeout and error checking
‘ - Signals the device with a CTL0 pulse
‘ - Reads the device’s response using formatted I/O
‘
Sub cmdMeas_Click ()

Dim id As Integer ‘ device session id
Dim retval As Integer ‘ function return value
Dim buf As String ‘ buffer for displaying
Dim real_data As Double ‘ data from device

‘ Set up an error handler within this subroutine that will
‘ be called if a SICL error occurs.

On Error GoTo ErrorHandler

‘ Disable the button used to initiate I/O while I/O is
‘ being performed.

cmdMeas.Enabled = False

‘ Open an interface session using a known symbolic name
id = iopen(“gpio12”)

‘ Set the I/O timeout value for this session to 3 sec
Call itimeout(id, 3000)

‘ Setup formatted I/O configuration
Call igpiosetwidth(id, 8)
Call igpioctrl(id, I_GPIO_READ_EOI, 10)

‘ Signal the device to take a measurement
Call itrigger(id)

‘ Get the data
retval = ivscanf(id, “%lf%*t”, real_data)

‘ Display the response as string in a Message Box
buf = Str$(real_data)
retval = MsgBox(buf, MB_OK, “GPIO Data”)

‘ Close the device session.
Call iclose(id)
Chapter 5 97

Using SICL with GPIO
Using GPIO Interface Sessions
‘ Enable the button used to initiate I/O
cmdMeas.Enabled = True

Exit Sub

ErrorHandler:
‘ Display the error message string in a Message Box

retval = MsgBox(Error$, MB_ICONEXCLAMATION, “SICL Error”)

‘ Close the device session if iopen was successful.
If id <> 0 Then

iclose (id)
End If

‘ Enable the button used to initiate I/O
cmdMeas.Enabled = True
Exit Sub

End Sub

‘ The following routine is called when the application’s
‘ Start Up form is unloaded. It calls siclcleanup to
‘ release resources allocated by SICL for this
‘ application. ‘

Sub Form_Unload (Cancel As Integer)
Call siclcleanup ‘ Tell SICL to clean up for this task

End Sub

Example: GPIO Interrupts

/* gpiointr.c
This program:
- Creates a GPIO session with error checking
- Installs an interrupt handler and enables EIR interrupts
- Waits for EIR; invokes the handler for each interrupt

*/

#include <sicl.h>

void SICLCALLBACK handler(id, reason, sec)
INST id;
int reason, sec;
{

98 Chapter 5

Using SICL with GPIO
Using GPIO Interface Sessions
if (reason == I_INTR_GPIO_EIR) {
printf(“EIR interrupt detected\n”);

/* Proper protocol is for the peripheral device to hold
 * EIR asserted until the controller “acknowledges” the
 * interrupt. The method for acknowledging and/or responding
 * to EIR is very device-dependent. Perhaps a CTLx line is
 * pulsed, or data is read, etc. The response should be
 * executed at this point in the program.
 */
}
else

printf(“Unexpected Interrupt; reason=%d\n”, reason);
}

main()
{

INST intf; /* interface session id */

#if defined (__BORLANDC__) && !defined (__WIN32__)
_InitEasyWin(); /* re quired for Borland EasyWin programs */
#endif

/* log message and exit program on error */
ionerror(I_ERROR_EXIT);

/* open GPIO interface session */
intf = iopen(“gpio”);

/* suspend interrupts until configured */
iintroff();

/* configure interrupts */
ionintr(intf, handler);
isetintr(intf, I_INTR_GPIO_EIR, 1);

/* wait for interrupts */
printf(“Ready for interrupts\n”);
while (1) {

iwaithdlr(0); /* optional timeout can be specified here*/
}

Chapter 5 99

Using SICL with GPIO
Using GPIO Interface Sessions
/* iwaithdlr performs an automatic iintron(). If your program
 * does concurrent processing, instead of waiting you need
 * to execute iintron() when you are ready for interrupts.
 */

 /* This simplified example loops forever. Most real applications
 * would have termination conditions that cause the loop to exit.
 */
iclose(id);

/* This call is a no-op for WIN32 applications. */

_siclcleanup();
}

100 Chapter 5

6

Using SICL with VXI
101

Using SICL with VXI

This chapter shows how to use SICL to communicate over the VXIbus.
The example programs in this chapter are also provided in the
C\SAMPLES\MISC subdirectory under the SICL base directory. This
chapter includes:

n Introduction
n Using VXI Device Sessions
n Using VXI Interface Sessions
n Communicating with VME Devices
n SICL Function Support for VXI
n VXI Backplane Memory I/O Performance
n Using VXI-Specific Interrupts
102 Chapter 6

Using SICL with VXI
Introduction
Introduction
This section provides an introduction to using SICL with the VXI interface,
including:

n Selecting a VXI Communications Session
n SICL VXI Functions

Selecting a VXI Communications Session

Before you begin programming your VXI system, ensure the system is set
up and operating correctly. To begin programming a VXI system, you must
first determine the type of communication session to be used. The two types
of supported VXI communication sessions are:

n Device Session. A VXI device session allows direct access to a
device regardless of the type of interface to which the device is
connected.

n Interface Session. A VXI interface session allows direct, low-level
control of the specified interface that provides full control of the
activities on a given interface, such as VXI.

Device sessions are the recommended method for communicating while
using SICL since they provide the highest level of programming, best overall
performance, and best portability.

NOTE

Commander Sessions are not supported with VXI interfaces.
Chapter 6 103

Using SICL with VXI
Introduction
SICL VXI Functions

A summary of VXI-specific functions follows. Using these VXI interface
specific functions means that the program cannot be used on other
interfaces and, therefore, becomes less portable. These functions will
work over a LAN-gatewayed session if the server supports the operation.

SICL VXI Functions

Function Name Action

ivxibusstatus
ivxigettrigroute
ivxirminfo
ivxiservants
ivxitrigoff
ivxitrigon
ivxitrigroute
ivxiwaitnormop
ivxiws

Returns requested bus status information
Returns the routing of the requested trigger line
Returns information about VXI devices
Identifies active servants
De-asserts VXI trigger line(s)
Asserts VXI trigger line(s)
Routes VXI trigger lines
Suspends until normal operation is established
Sends a word-serial command to a device
104 Chapter 6

Using SICL with VXI
Using VXI Device Sessions
Using VXI Device Sessions
This section gives guidelines to communicate directly with VXI devices using
VXI device sessions.

VXI Device Types

There are two different types of VXI devices: message-based and register-
based. To program a VXIbus system that is mixed with both message-based
and register-based devices, open a communications session for each device
in the system and program as shown in the following sections.

n Message-Based Devices. Message-based devices have their own
processors that allow them to interpret high-level SCPI (Standard
Commands for Programmable Instruments) commands. When
using SICL, place the SCPI command within the SICL output
function call and the message-based device interprets the
SCPI command.

n Register-Based Devices. Register-based devices typically do not
have their own processor to interpret high-level commands and
therefore accept only binary data. You can use the following
methods to program register-based devices:

q Interpreted SCPI. Use the SICL iscpi interface and program
using high-level SCPI commands. I-SCPI interprets high-level
SCPI commands and sends the data to the instrument.
Interpreted SCPI (I-SCPI) is supported over LAN, but register
programming (imap, ipeek, ipoke, etc) is not supported over
LAN. I-SCPI runs on a LAN server in a LAN-based system.

q Register programming. Do register peeks and pokes and
program directly to the device’s registers with the vxi interface.

n Compiled SCPI. Use the C-SCPI product and program with high-level
SCPI commands (achieve higher throughput as well).

n Command Module. Use a Command Module to interpret the high-
level SCPI commands. The gpib interface is used with a Command
Module. A Command Module may also be accessed over a LAN
using a LAN-to-GPIB gateway.
Chapter 6 105

Using SICL with VXI
Using VXI Device Sessions
Using VXI Message-Based Devices

Message-based devices have their own processors which allow them to
interpret high-level SCPI commands. When using SICL, place the SCPI
command within the SICL output function call and the message-based
device interprets the SCPI command. SICL functions used for programming
message-based devices include iread, iwrite, iprintf, iscanf, etc..

$GGUHVVLQJ�9;,�
0HVVDJH�%DVHG�
'HYLFHV

To create a VXI device session, specify the interface symbolic name or
logical unit and a device’s address in the addr parameter of the iopen
function. The interface symbolic name and logical unit are set by running the
IO Config utility. To open IO Config, click the Agilent IO
Libraries Control and then click Run IO Config. See the
Agilent IO Libraries Installation and Configuration Guide for Windows for
information on IO Config.

Primary address must be between 0 and 255. The primary address
corresponds to the VXI logical address and specifies the address in A16
space of the VXI device. SICL supports only primary addressing on the VXI
device sessions. Specifying a secondary address causes an error.

Some example addresses for VXI device sessions follow. These examples
use the default symbolic name specified during the system configuration. To
change the name listed, you must also change the symbolic name or logical
unit specified during the configuration. The name used in the SICL program
must match the logical unit or symbolic name specified in the system
configuration. Other possible interface names are VXI, vxi, etc..

NOTE

If a message-based device has shared memory, you can access the
device’s shared memory with register peeks and pokes. See “Register-
Based Devices” in this chapter for information on register programming.

vxi,24 A device address corresponding to the device at
primary address 24 on the vxi interface.

vxi,128 A device address corresponding to the device at
primary address 128 on the vxi interface.
106 Chapter 6

Using SICL with VXI
Using VXI Device Sessions
An example of opening a device session with the VXI device at logical
address 64 follows.

INST dmm;
dmm = iopen (“vxi,64”);

([DPSOH��9;,�
0HVVDJH�%DVHG�
'HYLFH�6HVVLRQ��&�

This example program opens a communication session with a VXI
message-based device and measures the AC voltage. The measurement
results are then printed.

/* vximdev.c
This example program measures AC voltage on a
multimeter andprints out the results */

#include <sicl.h>
#include <stdio.h>

main()
{

INST dvm;
char strres[20];

/* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen (“vxi,24”);
itimeout (dvm, 10000);

/* Initialize dvm */
iwrite (dvm, “*RST\n”, 5, 1, NULL);

/* Take measurement */
iwrite (dvm,”MEAS:VOLT:AC? 1, 0.001\n”, 23, 1, NULL);

/* Read measurements */
iread (dvm, strres, 20, NULL, NULL);

/* Print the results */
printf(“Result is %s\n”, strres);

/* Close the multimeter session */
iclose(dvm);
}

Chapter 6 107

Using SICL with VXI
Using VXI Device Sessions
Using Register-Based Devices

&RPPXQLFDWLRQ�
0HWKRGV

Several methods you can use to communicate with register-based devices
follow. For a SICL application that accesses VXI devices using GPIB and a
Command Module, you can port your application to use the iscpi interface
and directly access the VXI backplane without the use of the Command
Module. Do this by changing the iopen function to use the iscpi interface
followed by the device’s logical address.

See “Addressing VXI Register-Based Devices” in this chapter for more
details on addressing rules. Since I-SCPI was designed to simulate control
of register-based instruments using GPIB and the Command Module, you
usually will not need to change anything else in your application.

There are other applications that use SICL as their I/O library, but have their
own methods of communicating with the instruments. These applications
hide most of the I/O complexity behind the user interface. Contact your local
sales representative for information on other products that might interpret
the high-level SCPI commands for register-based devices.

n iscpi interface. Use the SICL iscpi interface and program using
SCPI commands. The iscpi interface interprets the SCPI
commands and allows direct communication with register-based
devices.This method is supported over LAN.

n Register Programming. Use the vxi interface to program directly
to the device’s registers with a series of register peeks and pokes.
This method can be very time-consuming and difficult. This method
is not supported over LAN.

n Compiled SCPI. Compiled SCPI product is a programming language
that can be used with SICL to program register-based devices using
SCPI commands. Because Compiled SCPI interprets SCPI
commands at compile time, Compiled SCPI can be used to
achieve high throughput of register-based devices.

NOTE

Agilent VISA must be installed to use the iscpi interface.
108 Chapter 6

Using SICL with VXI
Using VXI Device Sessions
n Command Module. You can use a Command Module to
communicate with VXI devices via GPIB. The Command Module
interprets the high-level SCPI commands for register-based
instruments and sends low-level commands over the VXIbus
backplane to the instruments. See Chapter 4 - Using SICL with
GPIB for details on communicating via a Command Module.

$GGUHVVLQJ�9;,�
5HJLVWHU�%DVHG�
'HYLFHV

To create a device session, specify the interface symbolic name or logical
unit and a device’s address in the addr parameter of the iopen function.
The interface symbolic name and logical unit are set by running the IO
Config utility. To open IO Config, click the Agilent IO Libraries
Control and then click Run IO Config. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for information on
IO Config.

The primary address corresponds to the VXI logical address and must be
between 0 and 255. SICL supports only primary addressing on VXI device
sessions. Specifying a secondary address causes an error. Some example
addresses for VXI device sessions follow.

These examples use the default symbolic name specified during the system
configuration. To change the name listed, you must also change the
symbolic name or logical unit specified during the configuration. The name
used in your SICL program must match the logical unit or symbolic name
specified in the system configuration. Other possible interface names are
VXI, vxi, etc..

An example of opening a device session with the VXI device at logical
address 64 follows.

INST dmm;
dmm = iopen (“vxi,64”);

iscpi,32 A register-based device address corresponding to the
device at primary address 32 on the iscpi interface.

vxi,24 A device address corresponding to the device at
primary address 24 on the vxi interface.

vxi,128 A device address corresponding to the device at
primary address 128 on the vxi interface.
Chapter 6 109

Using SICL with VXI
Using VXI Device Sessions
,QWHUSUHWHG�6&3,�
�iscpi��
$GGUHVVLQJ�5XOHV�

The simplest way to address a register-based device using the Interpreted
SCPI (I-SCPI or iscpi) interface is to specify the interface logical unit or
symbolic name and a device logical address in the addr parameter of the
iopen function. For example:

dmm=iopen (“iscpi,24”);

I-SCPI automatically configures your system according to combining rules
that determine how instruments are set up relative to other VXI instruments.

Generally, when an iopen is performed, an instrument is formed consisting
of all devices at logical addresses contiguous to the base logical address
passed in the address string. For example, if you open an instrument at
logical address 24 with the next logical address at 25, the iscpi interface
searches for an instrument driver that supports the devices found.

Defining an Instrument. For control of logical addresses used to form a
particular instrument, you can use an explicit list in the logical address
portion of the iopen call. Define the instrument by adding a colon after the
interface symbolic name, followed by the backplane name as specified in
the IO Config utility (backplane is the symname of the VXI backplane
SICL driver, usually vxi). Then, add the instrument logical addresses
enclosed within parentheses separated by commas.

This example combines instruments at logical address 24 and 25 to form
one instrument. The logical addresses of these instruments do not have to
be contiguous.

dmm=iopen (“iscpi:vxi,(24,25)”);

Defining an Instrument Driver. To specify an instrument driver to use for a
specific set of logical addresses, add the instrument driver name within
brackets. This allows you to create your own instrument drivers or you can
form unique virtual instrument combinations. For example:

dmm=iopen (“iscpi,24[E1326]”);

To specify an instrument driver plus the instruments grouped together to
form the instrument, use the following form. The iopen call will run faster if
you specify an instrument driver name since it does not have to search
through all the instrument drivers for a match.

dmm=iopen (“iscpi[E1326]:vxi,(24,25)”);

The directory location specified during the SICL installation is searched for a
matching instrument driver.
110 Chapter 6

Using SICL with VXI
Using VXI Device Sessions
3URJUDPPLQJ�ZLWK�
,QWHUSUHWHG�6&3,�
�WKH�iscpi�
,QWHUIDFH�

The Interpreted SCPI (I-SCPI or iscpi) interface allows you to program
register-based instruments with high-level SCPI commands. To program
using the iscpi interface, open a device session with a specific register-
based instrument and then program using the SICL functions such as
iprintf, iscanf, and ireadstb.

To use the iscpi interface, you must first have configured the system with
the IO Config utility to include iscpi as an interface. See the Agilent IO
Libraries Installation and Configuration Guide for Windows for information
on IO Config.

When opening the device session, you will need to specify iscpi as the
interface type in the SICL iopen call. See “Interpreted SCPI (iscpi)
Addressing Rules” in this chapter for information on addressing with the
iscpi interface.

The iscpi interface was designed to closely simulate control of register-
based instruments using a Command Module via GPIB. When an iopen is
performed, I-SCPI searches for an instrument driver consisting of all the
devices at logical addresses contiguous to the base logical address.

If no instrument driver supports the list of contiguous logical addresses, the
device with the highest logical address will be removed and the search
process repeated. This continues until the driver is found or this list is
exhausted. If no instrument driver is found, the iopen call will fail.

Once an iopen is successful, I-SCPI runs in an infinite loop waiting to parse
SCPI commands for the instrument. A separate process is created for each
instrument that is opened.

Register-Based Instrument Drivers. The iscpi interface includes drivers
for most Agilent register-based devices. These drivers are located in the
VISA directory specified during the Agilent IO Libraries installation (default is
C:\Program Files\VISA\WIN95\BIN (Windows 95/98) or
C:\Program Files\VISA\WINNT\BIN (Windows NT/2000). See the
C:\Program Files\VISA\WINxx\BIN\iscpinfo.TXT file for a list
of currently supported register-based devices.
Chapter 6 111

Using SICL with VXI
Using VXI Device Sessions
([DPSOH� iscpi�
'HYLFH�6HVVLRQ

This example program opens a communication session with a VXI register-
based device with the iscpi interface and then uses SCPI commands to
measure the AC voltage and print out the results.

/* vxiiscpi.c
This example program measures AC voltage on a
multimeter and prints out the results */

#include <sicl.h>
#include <stdio.h>

main()
{

INST dvm;
char strres[20];

/* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen (“iscpi,24”);
itimeout (dvm, 10000);

/* Initialize dvm */
iwrite (dvm, “*RST\n”, 5, 1, NULL);

/* Take measurement */
iwrite (dvm,”MEAS:VOLT:AC? 1, 0.001\n”, 23, 1, NULL);

/* Read measurements */
iread (dvm, strres, 20, NULL, NULL);

/* Print the results */
printf(“Result is %s\n”, strres);

/* Close the multimeter session */
iclose(dvm);

}

112 Chapter 6

Using SICL with VXI
Using VXI Device Sessions
3URJUDPPLQJ�
'LUHFWO\�WR�WKH�
5HJLVWHUV�

When communicating with register-based devices, you must either send a
series of peeks and pokes directly to the device’s registers or use a
command interpreter to interpret the high-level SCPI commands. Command
interpreters include the iscpi interface, Agilent Command Module,
Agilent B-Size Mainframe (built-in Command Module), or Compiled SCPI
(C-SCPI).

When sending a series of peeks and pokes to the device’s registers, use
the following process. This procedure is only used on register-based devices
that are not using the iscpi interface. Note that programming directly to the
registers is not supported over LAN.

n Map memory space into your process space.
n Read the register’s contents using i?peek.
n Write to the device registers using i?poke.
n Unmap the memory space.

Mapping Memory Space for Register-Based Devices

When using SICL to communicate directly to the device’s registers, you
must map a memory space into the process space by using the SICL imap
function:

imap (id, map_space, pagestart, pagecnt, suggested);

This function maps space for the interface or device specified by the id
parameter. pagestart, pagecnt, and suggested indicate the page number,
numbesr of pages, and a suggested starting location respectively.
map_space determines which memory location to map the space.

Due to hardware constraints on given devices or interfaces, not all address
spaces may be implemented. In addition, there may be a maximum number
of pages that can be simultaneously mapped.

If a request is made that cannot be granted due to hardware constraints,
the process will hang until the desired resources become available. To avoid
this, use the isetlockwait with the flag parameter set to 0 and thus
generate an error instead of waiting for the resources to become available.
You may also use the imapinfo function to determine hardware constraints
before making an imap call. Some Valid map_space choices follow.
Chapter 6 113

Using SICL with VXI
Using VXI Device Sessions
.

Some example imap function calls follow.

/* Map to the VXI device vm starting at pagenumber 0
for 1 page */
base_address = imap (vm, I_MAP_VXIDEV, 0, 1, NULL);

/* Map to A32 address space (16 Mbytes) */
ptr = imap (id, I_MAP_A32, 0x000, 0x100, NULL);

/* Map to a device’s A24 or A32 extended memory */
ptr=imap (id, I_MAP_EXTEND, 0, 1, 0);

/* Map to a computer’s A24 or A32 shared memory */
ptr=imap (id, I_MAP_SHARED, 0, 1, 0);

Function Description

I_MAP_A16 Maps in VXI A16 address space (device or interface
sessions, 64K byte pages).

I_MAP_A24 Maps in VXI A24 address space (device or interface
sessions, 64K byte pages).

I_MAP_A32 Maps in VXI A32 address space (device or interface
sessions, 64K byte pages).

I_MAP_VXIDEV Maps in VXI A16 device registers (device session
only, 64 bytes).

I_MAP_EXTEND Maps in VXI device extended memory address space
in A24 or A32 address space (device sessions only).

I_MAP_SHARED Maps in VXI A24/A32 memory that is physically
located on the computer (sometimes called local
shared memory, interface sessions only).

I_MAP_AM | address
modifer

Maps in the specified region (address modifer) of
VME address space. See the “Communicating with
VME Devices” section later in this chapter for more
information on this map space argument
114 Chapter 6

Using SICL with VXI
Using VXI Device Sessions
Use the following table to determine which map-space argument to use with
a SICL imap/iunmap function. All accesses through the *_D32 map
windows can only be 32-bit transfers. The application software must do a
32-bit assignment to generate the access and only accesses on 32-bit
boundaries are allowed. If 8- or 16-bit accesses to the device are also
necessary, a normal I_MAP_A16/24/32 map must also be requested.

Reading and Writing to Device Registers

When you have mapped the memory space, use the SICL i?peek and
i?poke functions to communicate with register-based instruments. With
these functions, you need to know which register you want to communicate
with and the register’s offset. See the instrument’s user’s manual for a
description of the registers and register locations. See Chapter 11 - SICL
Language Reference for a description of the i?peek and i?poke functions.
An example using iwpeek follows.

id = iopen (“vxi,24”);
addr = imap (id, I_MAP_VXIDEV, 0, 1, 0);
reg_data = iwpeek (addr + 4);

Unmapping Memory Space

Be sure you use the iunmap function to unmap the memory space when
the space is no longer needed. This frees the mapping hardware so it can be
used by other processes.

([DPSOH��9;,�
5HJLVWHU�%DVHG�
3URJUDPPLQJ��&�

This example program opens a communication session with a register-
based device connected to the address entered by the user. The program
then reads the Id and Device Type registers and the prints the register
contents.

imap/iunmap
(map-space argument)

Widths VME Data
Access Mode

I_MAP_A16 D8,D16 Supervisory

I_MAP_A24 D8,D16 Supervisory

I_MAP_A32 D8,D16 Supervisory

I_MAP_A16_D32 D32 Supervisory

I_MAP_A24_D32 D32 Supervisory

I_MAP_A32_D32 D32 Supervisory
Chapter 6 115

Using SICL with VXI
Using VXI Device Sessions
/* vxirdev.c
The following example prompts the user for an instrument
address and then reads the id register and device type
register. The contents of the register are displayed.*/

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

void main (){
char inst_addr[80];
char *base_addr;
unsigned short id_reg, devtype_reg;
INST id;

/* get instrument address */
puts (“Please enter the logical address of the

register-based instrument, for example,
vxi,24 : \n”);

gets (inst_addr);

/* install error handler */
ionerror (I_ERROR_EXIT);

/* open communications session with instrument */
id = iopen (inst_addr);
itimeout (id, 10000);

/* map into user memory space */
base_addr = imap (id, I_MAP_VXIDEV, 0, 1, NULL);

/* read registers */
id_reg = iwpeek ((unsigned short *)(base_addr + 0x00));
devtype_reg = iwpeek ((unsigned short *)(base_addr + 0x02));

/* print results */
printf (“Instrument at address %s\n”, inst_addr); printf

“ID Register = 0x%4X\n Device Type Register =
0x%4X\n”, id_reg, devtype_reg);

/* unmap memory space */
iunmap (id, base_addr, I_MAP_VXIDEV, 0, 1);

 /* close session */
iclose (id);}
116 Chapter 6

Using SICL with VXI
Using VXI Interface Sessions
Using VXI Interface Sessions
VXI interface sessions allow direct low-level control of the interface.
However, the programmer must provide all bus maintenance for the
interface and have considerable knowledge of the interface. When using
interface sessions, you must use interface-specific functions which means
the program cannot be used on other interfaces and becomes less portable.

Addressing VXI Interface Sessions

To create an interface session on a VXI system, specify the interface
symbolic name or logical unit in the addr parameter of the iopen function.
The interface symbolic name and logical unit are set by running the IO
Config utility. To open IO Config, click the Agilent IO Libraries
Control and then click Run IO Config. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for information on
IO Config.

Some example addresses for VXI interface sessions follow. These
examples use the default symbolic name specified during the system
configuration. To change the name listed, you must also change the
symbolic name or logical unit specified during the configuration.

The name used in your SICL program must match the logical unit or
symbolic name specified in the system configuration. Other possible
interface names are VXI, vxi, etc. The only interface session operations
supported by I-SCPI are service requests and locking.

This example opens a interface session with the VXI interface.

INST vxi;
vxi = iopen (“vxi”);

vxi An interface symbolic name.

iscpi An interface symbolic name.
Chapter 6 117

Using SICL with VXI
Using VXI Interface Sessions
Example: VXI Interface Session (C)

This example program opens a communication session with the VXI
interface and uses the SICL interface specific ivxirminfo function to get
information about a specific VXI device. This information comes from the
VXI resource manager and is only valid as of the last time the VXI resource
manager was run.

 /* vxiintr.c
The following example gets information about a specific
vxi device and prints it out. */

#include <stdio.h>
#include <sicl.h>

void main () {
int laddr;
struct vxiinfo info;
INST id;

/* get instrument logical address */
printf (“Please enter the logical address of the

 register-based instrument, for example,
 24 : \n”);

scanf (“%d”, &laddr);

/* install error handler */
ionerror (I_ERROR_EXIT);

/* open a vxi interface session */
id = iopen (“vxi”);
itimeout (id, 10000);

/*read VXI resource manager information for
 specified device*/
ivxirminfo (id, laddr, &info);

/* print results */
printf (“Instrument at address %d\n”, laddr);
printf (“Manufacturer’s Id = %s\n Model = %s\n”,

info.manuf_name, info.model_name);

 /* close session */
iclose (id);

}

118 Chapter 6

Using SICL with VXI
Communicating with VME Devices
Communicating with VME Devices
Although VXI is an extension of VME, VME is not easy to use in a VXI
system. Since the VXI standard defines specific functionality that would be
custom designs in VME, some resources required for VME custom design
are actually used by VXI. Therefore, there are certain limitations and
requirements when using VME in a VXI system.

Use these process when using VME devices in a VXI mainframe:

n Declaring Resources
n Mapping VME Memory
n Reading and Writing to Device Registers
n Unmapping Memory

Declaring Resources

The VXI Resource Manager does not reserve resources for VME devices.
Instead, a configuration file is used to reserve resources for VME devices in
a VXI system. Use the VXI Device Configurator to edit the DEVICES file
(or edit the file directly) to reserve resources for VME devices. The VXI
Resource Manager reads this file to reserve the VME address space and
VME IRQ lines. The VXI Resource Manager then assigns the VXI devices
around the already reserved VME resources.

For VME devices requiring A16 address space, the device’s address space
should be defined in the lower 75% of A16 address space (addresses below
0xC000). This is necessary because the upper 25% of A16 address space is
reserved for VXI devices.

For VME devices using A24 or A32 address space, use A24 or A32 address
ranges just higher than those used by your VXI devices. This will prevent the
VXI Resource Manager from assigning the address range used by the VME
device to any VXI device. (The A24 and A32 address range is software
programmable for VXI devices.)

NOTE

VME is not an officially supported interface for SICL and is not supported
over LAN.
Chapter 6 119

Using SICL with VXI
Communicating with VME Devices
Mapping VME Memory

SICL defaults to byte, word, and longword supervisory access to simplify
programming VXI systems. However, some VME cards use other modes of
access that are not supported in SICL. Therefore, SICL provides a map
parameter that allows you to use the access modes defined in the VMEbus
Specification. See the VMEbus Specification for information on these access
modes.

Use the I_MAP_AM | address modifer map space argument in the imap
function to specify the map space region (address modifer) of VME address
space. See the VMEbus Specifications for information on values to use as
the address modifier. If the controller does not support specified address
mode, the imap call will fail (see table in the next section).

This maps A24 non-privileged data access mode:

prt = imap (id, (I_MAP_AM | 0x39), 0x20, 0x4, 0);

This maps A32 non-privileged data access mode:

prt = imap (id, (I_MAP_AM | 0x09), 0x20, 0x40, 0);

This table lists VME access modes supported on Hewlett-Packard
controllers.

VME Mapping Support

NOTE

Use care when mixing VXI and VME devices. You must know the VME
address space and offset within that address space the VME devices
use. VME devices cannot use the upper 16K of the A16 address space
since this area is reserved for VXI instruments.

When accessing VME or VXI devices via an embedded controller, current
versions of SICL use the “supervisory data” address modifiers 0x2D,
0x3D, and 0x0D for A16, A24, and A32 accesses, respectively. (Some
older versions of SICL use the “non-privileged data” address modifiers.)

A16
D08 D16 D32

A24
D08 D16 D32

A32
D08 D16 D32

Supervisory data X X X X X X X X X

Non-Privileged data
120 Chapter 6

Using SICL with VXI
Communicating with VME Devices
Reading and Writing to Device Registers

After you have mapped the memory space, use the SICL i?peek and
i?poke functions to communicate with the VME devices. With these
functions, you need to know the register to communicate with and the
register’s offset.

See the instrument’s user’s manual for descriptions of registers and register
locations. See Chapter 11 - SICL Language Reference for a description of
the i?peek and i?poke functions. This is an example using iwpeek:

id = iopen (“vxi”);
addr = imap (id, (I_MAP_AM | 0x39), 0x20, 0x4, 0);
reg_data = iwpeek ((unsigned short *)(addr + 0x00));

Unmapping Memory Space

Make sure you use the iunmap function to unmap the memory space when
it is no longer needed. This frees the mapping hardware so it can be used by
other processes.

VME Interrupts

There are seven VME interrupt lines that can be used. By default, VXI
processing of the IACK value will be used. However, if you configure VME
IRQ lines and VME Only, no VXI processing of the IACK value will be done.
That is, the IACK value will be passed to a SICL interrupt handler directly.
See isetintr in Chapter 11 - SICL Language Reference for information
on the VME interrupts.

Example: VME Interrupts (C)

This ANSI C example program opens a VXI interface session and sets up
an interrupt handler. When the I_INTR_VME_IRQ1 interrupt occurs, the
function defined in the interrupt handler will be called. The program then
writes to the registers, causing the I_INTR_VME_IRQ1 interrupt to occur.

You must edit this program to specify the starting address and register offset
of your specific VME device. This example program also requires the VME
device to be using I_INTR_VME_IRQ1 and the controller to be the handler
for the VME IRQ1.
Chapter 6 121

Using SICL with VXI
Communicating with VME Devices
/* vmedev.c
This example program opens a VXI interface session and sets
up an interrupt handler. When the specified interrupt occurs,
the procedure defined in the interrupt handler is called. You
must edit this program to specify starting address and
register offset for your specific VME device. */

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

#define ADDR “vxi”

void handler (INST id, long reason, long secval){
printf (“Got the interrupt\n”);

}

void main ()
{

unsigned short reg;
char *base_addr;
INST id;

/* install error handler */
ionerror (I_ERROR_EXIT);

/* open an interface communications session */
id = iopen (ADDR);
itimeout (id, 10000);

/* install interrupt handler */
ionintr (id, handler);
isetintr (id, I_INTR_VME_IRQ1, 1);

/* turn interrupt notification off so that interrupts are
not recognized before the iwaithdlr function is called*/

iintroff ();

/* map into user memory space */
base_addr = imap (id, I_MAP_A24, 0x40, 1, NULL);

/* read a register */
reg = iwpeek((unsigned short *)(base_addr + 0x00));
122 Chapter 6

Using SICL with VXI
Communicating with VME Devices
/* print results */
printf (“The registers contents were as follows:

 0x%4X\n”, reg);

/* write to a register causing interrupt */
iwpoke ((unsigned short *)(base_addr + 0x00), reg);

/* wait for interrupt */
iwaithdlr (10000);

/* turn interrupt notification on */
iintron ();

/* unmap memory space */
iunmap (id, base_addr, I_MAP_A24, 0x40, 1);

/* close session */
iclose (id);

}

Chapter 6 123

Using SICL with VXI
SICL Function Support with VXI
SICL Function Support with VXI
This section describes how SICL functions are implemented for VXI device
sessions and interface sessions.

VXI Message-Based Device Sessions

This section describes how some SICL functions are implemented for VXI
device sessions for message-based devices.

iwrite Sends the data to the (message-based) servant using
the byte-serial write protocol and the byte available
word-serial command.

iread Reads the data from the (message-based) servant
using the byte-serial read protocol and the byte request
word-serial command.

ireadstb (read status byte) Performs a VXI readSTB word-serial
command.

itrigger Sends a word-serial trigger to the specified message-
based device.

iclear Sends a word-serial device clear to the specified
message-based device.

ionsrq Can be used to catch SRQs from message-based
devices.
124 Chapter 6

Using SICL with VXI
SICL Function Support with VXI
Interpreted SCPI Device Sessions

The iscpi interface is used to program VXI register-based instruments.
However, the VXI specific and register-based specific SICL functions such
as ivxiws, imap, and ipeek are not necessary and are not implemented
for the iscpi interface. The following describes how some SICL functions
are implemented for iscpi device sessions.

,QWHUSUHWHG�6&3,�
'HYLFH�6HVVLRQV�
,QWHUUXSWV

The iscpi interface does not support interrupts, so the SICL ionintr
function is not implemented for iscpi device sessions. There are no
device-specific interrupts for the iscpi interface.

,QWHUSUHWHG�6&3,�
'HYLFH�6HVVLRQV�
6HUYLFH�5HTXHVWV

iscpi device sessions support Service Requests (SRQ) in the same
manner as GPIB. When one device issues an SRQ, all iscpi device
sessions that have SRQ handlers installed (see ionsrq in Chapter 11 -
SICL Language Reference) will be informed. This is an emulation of how
GPIB handles the SRQ line.

The interface cannot distinguish which device requested service, so iscpi
acts as if all devices require service. Your SRQ handler can retrieve the
device’s status byte by using the ireadstb function. The status byte can
be used to determine if the instrument needs service. It is good practice to
ensure that a device is not requesting service before leaving the SRQ
handler. The easiest technique for this is to service all devices from one
handler.

iwrite Sends the SCPI commands to the register-based
instrument driver’s input buffer. The driver will interpret
the command and do register peeks and pokes. If the
command is a query, the driver will put the data into its
output buffer.

iread Reads the data from the register-based instrument
driver’s output buffer.

ireadstb Performs the equivalent of a serial poll (SPOLL).

itrigger Performs the equivalent of an addressed group execute
trigger (GET).

iclear Performs the equivalent of a device clear (DCL) on the
device corresponding to this session.
Chapter 6 125

Using SICL with VXI
SICL Function Support with VXI
VXI Register-Based Device Sessions

Because VXI register-based devices do not support the word serial protocol
and other features of message-based devices, the following SICL functions
are not supported with register-based device sessions unless you use the
iscpi interface.

All other functions will work with all VXI devices (message-based, register-
based, etc.). Use the i?peek and i?poke functions to communicate with
register-based devices.

VXI Interface Sessions

The following describes how some SICL functions are implemented for VXI
interface sessions. I-SCPI interface sessions only support service requests
and locking (ionsrq, ilock, and iunlock).

Category Functions Not Supported

Non-formatted I/O iread, iwrite, itermchr

Formatted I/O iprintf, iscanf, ipromptf, ifread,
ifwrite, iflush, isetbuf, isetubuf

Device/Interface Control iclear, ireadstb, isetstb, itrigger

Service Requests igetonsrq, ionsrq

Timeouts igettimeout, itimeout

VXI Specific ivxiws

iwrite and iread Not supported for VXI interface sessions. Returns the
I_ERR_NOTSUPP error.

iclear Causes the VXI interface to perform a SYSREST on
interface sessions. This causes all VXI devices to
reset. If the iscpi interface is being used, the iscpi
instrument will be terminated.

If this happens, a No Connect error message occurs
and you must reopen the iscpi communications
session. All servant devices cease to function until the
VXI resource manager runs and normal operation is
re-established.
126 Chapter 6

Using SICL with VXI
VXI Backplane Memory I/O Performance
VXI Backplane Memory I/O Performance
SICL supports two different memory I/O mechanisms for accessing memory
on the VXI backplane.

8VLQJ�6LQJOH�
/RFDWLRQ�3HHN�
3RNH

Single location peek/poke or direct memory dereference is the most efficient
in programs that require repeated access to different addresses. On many
platforms, the peek/poke operations are actually macros which expand to
direct memory dereferencing.

An exception is Windows platforms, where ipeek/ipoke are implemented
as functions since (under certain conditions) the compiler will attempt to
optimize a direct dereference and cause a VXI memory access of the wrong
size. For example, when masking the results of a 16-bit read in an
expression:

data = iwpeek(addr) & 0xff;

the compiler will simplify this to an 8-bit read of the contents of the addr
pointer. This would cause an error when attempting to read memory on a
VXI card that did not support 8-bit access. When iwpeek is implemented
as a function, the correct size memory access is guaranteed.

8VLQJ�%ORFN�0HPRU\�
$FFHVV

The block memory access functions provide the highest possible
performance for transferring large blocks of data to or from the VXI
backplane. Although these calls have higher initial overhead than the
ipeek/ipoke calls, they are optimized on each platform to provide the
fastest possible transfer rate for large blocks of data.

These routines may use DMA, which is not available with ipeek/ipoke.
For small blocks, the overhead associated with the block memory access
functions may actually make these calls longer than an equivalent loop of
ipeek/ipoke calls.

Single location peek/
poke and direct
memory dereference

imap, iunmap, ibpeek, iwpeek,
ilpeek, ibpoke, iwpoke, ilpoke,
value = *pointer, *pointer = value

Block memory access imap, iunmap, ibblockcopy,
iwblockcopy, ilblockcopy,
ibpushfifo, iwpushfifo, ilpushfifo
ibpopfifo, iwpopfifo, ilpopfifo
Chapter 6 127

Using SICL with VXI
VXI Backplane Memory I/O Performance
The block size at which the block functions become faster depends on the
particular platform and processor speed.

([DPSOH��9;,�
0HPRU\�,�2��&�

An example follows that demonstrates the use of simple and block memory
I/O methods in SICL.

/*
siclmem.c
This example program demonstrates the use of
simple and block memory I/O methods in SICL. */

#include <sicl.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI_INST “vxi,24”

void main () {
INST id;
unsigned short *memPtr16;
unsigned short id_reg;
unsigned short devtype_reg;
unsigned short memArray[2];
int err;

/* Open a session to the instrument */
id = iopen(VXI_INST);

/* ============== Simple memory I/O =================
= iwpeek()
= direct memory dereference

On many platforms, the ipeek/ipoke operations are actually
macros which expand to direct memory dereferencing. The
exception is on Microsoft Windows platforms where ipeek/
ipoke are implemented as functions.

This is necessary because under certain conditions, the
compiler will attempt to optimize a direct dereference and
cause a VXI memory access of the wrong size. For example,
when masking the results of a 16-bit read in a expression:

data = iwpeek(addr) & 0xff;
128 Chapter 6

Using SICL with VXI
VXI Backplane Memory I/O Performance
the compiler will simplify this to an 8-bit read of the
contents of the addr pointer. This would cause an error when
attempting to read memory on a VXI card that did not support
8-bit access. */

/* Map into memory space */
memPtr16 = (unsigned short *)imap(id, I_MAP_VXIDEV, 0, 1, 0);

/* ============ Using Peek =================== */

/* Read instrument id register contents */
id_reg = iwpeek(memPtr16);

/* Read device type register contents */
id_reg = iwpeek(memPtr16+1);

/* Print results */
printf(“ iwpeek: ID Register = 0x%4X\n”, id_reg);
printf(“ iwpeek: Device Type Register = 0x%4X\n”,

 devtype_reg);

/* Use direct memory dereferencing */
id_reg = *memPtr16;
devtype_reg = *(memPtr16+1);

/* Print results */
printf(“dereference: ID Register = 0x%4X\n”, id_reg);
printf(“dereference: Device Type Register = 0x%4X\n”,

 devtype_reg);

/* ================= Block Memory I/O ==============
= iwblockcopy
= iwpushfifo
= iwpopfifo

These commands offer the best performance for reading and
writing large data blocks on the VXI backplane. For this
example, we are only moving 2 words at a time. Normally,
these functions would be used to move much larger blocks
of data. */
Chapter 6 129

Using SICL with VXI
VXI Backplane Memory I/O Performance
/* ============== Demonstrate Block Read =========== */

/* Read the instrument id register and device type
 register into an array. */

err = iwblockcopy(id, memPtr16, memArray, 2, 0);

/* Print results */
printf(“ iwblockcopy: ID Register = 0x%4X\n”, memArray[0]);
printf(“ iwblockcopy: Device Type Register = 0x%4X\n”,
memArray[1]);

/* ============ Demonstrate popfifo ================*/

/* Do a popfifo of the Id Register */
err = iwpopfifo(id, memPtr16, memArray, 2, 0);

/* Print results */
printf(“ iwpopfifo: 1 ID Register = 0x%4X\n”, memArray[0]);
printf(“ iwpopfifo: 2 ID Register = 0x%4X\n”, memArray[1]);

/* ================= Cleanup and Exit ==============*/

/* Unmap memory space */
iunmap(id, (char *)memPtr16, I_MAP_VXIDEV, 0, 1);

/* Close instrument session */
iclose(id);
}

130 Chapter 6

Using SICL with VXI
Using VXI-Specific Interrupts
Using VXI-Specific Interrupts
See the isetintr function in Chapter 11 - SICL Language Reference
for a list of VXI specific interrupts.

Example: VXI Interrupt Actions (C)

This pseudo-code describes the actions performed by SICL when a VME
interrupt arrives and/or a VXI signal register write occurs.

VME Interrupt arrives:
get iack value
send I_INTR_VME_IRQ?
is VME IRQ line configured VME only
if yes then

exit
do lower 8 bits match logical address of one of our servants?
if yes then

/* iack is from one of our servants */
call servant_signal_processing(iack)

else
/* iack is from non-servant VXI or VME device*/

send I_INTR_VXI_VME interrupt to interface sessions

Signal Register Write occurs:
get value written to signal register
send I_INTR_ANY_SIG
do lower 8 bits match logical address of one of our servants?
if yes then

/* Signal is from one of our servants */
call Servant_signal_processing(value)

else
/* Stray signal */
send I_INTR_VXI_UKNSIG to interface sessions

servant_signal_processing (signal_value)
/* Value is form one of our servants */
is signal value a response signal?
If yes then

process response signal
exit

/* Signal is an event signal */
is signal an RT or RF event?
if yes then

/* A request TRUE or request FALSE arrived */
Chapter 6 131

Using SICL with VXI
Using VXI-Specific Interrupts
process request TRUE or request FALSE event
generate SRQ if appropriate
exit

is signal an undefined command event?
if yes then

/* Undefined command event */
process an undefined command event
exit

/* Signal is a user-defined or undefined event */
send I_INTR_VXI_SIGNAL to device sessions for this device
exit

Example: Processing VME Interrupts (C)

/* vmeintr.c
This example uses SICL to cause a VME interrupt from
an E1361 register-based relay card at logical address 136.*/

#include <sicl.h>

static void vmeint (INST, unsigned short);
static void int_setup (INST, unsigned long);
static void int_hndlr (INST, long, long);
int intr = 0;
main() {

int o; INST id_intf1;
unsigned long mask = 1;

ionerror (I_ERROR_EXIT);
iintroff ();
id_intf1 = iopen (“vxi,136”);
int_setup (id_intf1, mask);
vmeint (id_intf1, 136);
/* wait for SRQ or interrupt condition */
iwaithdlr (0);

iintron ();
iclose (id_intf1);

}
static void int_setup(INST id, unsigned long mask) {

ionintr(id, int_hndlr);
isetintr(id, I_INTR_VXI_SIGNAL, mask);

}
static void vmeint (INST id, unsigned short laddr) {

int reg;
132 Chapter 6

Using SICL with VXI
Using VXI-Specific Interrupts
char *a16_ptr = 0;

reg = 8;
a16_ptr = imap (id, I_MAP_A16, 0, 1, 0);
/* Cause uhf mux to interrupt: */
iwpoke ((unsigned short *)(a16_ptr + 0xc000 + laddr *

 64 + reg), 0x0);
}
static void int_hndlr (INST id, long reason, long sec) {

printf (“VME interrupt: reason: 0x%x, sec: 0x%x\n”,
 reason,sec);

intr = 1;
}

Chapter 6 133

Using SICL with VXI
Using VXI-Specific Interrupts
Notes:
134 Chapter 6

7

Using SICL with RS-232
135

Using SICL with RS-232

This chapter shows how to open a communications session and
communicate with a device via an RS-232 connection. The example
programs in this chapter are also provided in the C\SAMPLES\MISC
(for C/C++) and VB\SAMPLES\MISC (for Visual Basic). The chapter
includes:

n Introduction
n Using RS-232 Device Sessions
n Using RS-232 Interface Sessions
136 Chapter 7

Using SICL with RS-232
Introduction
Introduction
This section provides an introduction to using SICL with the RS-232
interface, including:

n Selecting an RS-232 Communications Session
n SICL RS-232 Functions

Selecting an RS-232 Communications Session

RS-232 is a serial interface that is widely used for instrumentation. Although
RS-232 is slow in comparison to GPIB or VXI, its low cost makes it an
attractive solution in many situations. Because SICL for Windows uses
the RS-232 facilities built into the Windows operating system, controlling
RS-232 instruments is easy.

After you have configured your system for RS-232 communications, you can
start programming using the SICL functions. Using SICL to communicate
with a device via RS-232 is similar to using SICL to communicate via the
GPIB interface. To use SICL, you must first determine the type of
communications session required. An RS-232 communications session
can be either a device session or an interface session. Commander sessions
are not supported on RS-232.

Device Sessons. For direct access to a device, communication is with a
device session. An RS-232 device session should be used when sending
commands and receiving data from an instrument.

Interface Sessions. SICL also allows interface-specific actions, such as
setting device addresses or other interface-specific characteristics. To do
this, you communicate with an interface session. Setting interface
characteristics (such as the baud rate) must be done with an interface
session.

With RS-232, only one device is connected to the interface, so it may
seem like extra work to have both device sessions and interface sessions.
However, structuring the code so that interface-specific actions are isolated
from actions on the device itself makes programs easier to maintain. This is
especially important if you want to use a program with a similar device on a
different interface, such as GPIB.
Chapter 7 137

Using SICL with RS-232
Introduction
SICL RS-232 Functions

Function Name Action

iserialctrl Sets the following characteristics of the RS-232
interface:

Request Characteristic Settings

I_SERIAL_BAUD Data rate 2400, 9600, etc.

I_SERIAL_PARITY Parity I_SERIAL_PAR_NONE
I_SERIAL_PAR_IGNORE
I_SERIAL_PAR_EVEN
I_SERIAL_PAR_ODD
I_SERIAL_PAR_MARK

I_SERIAL_PAR_SPACE

I_SERIAL_STOP Stop bits / frame I_SERIAL_STOP_1
I_SERIAL_STOP_2

I_SERIAL_WIDTH Data bits / frame I_SERIAL_CHAR_5
I_SERIAL_CHAR_6
I_SERIAL_CHAR_7
I_SERIAL_CHAR_8

I_SERIAL_READ_BUFSZ Receive buffer size Number of bytes

I_SERIAL_DUPLEX Data traffic I_SERIAL_DUPLEX_HALF
I_SERIAL_DUPLEX_FULL

I_SERIAL_FLOW_CTRL Flow control I_SERIAL_FLOW_NONE
I_SERIAL_FLOW_XON
I_SERIAL_FLOW_RTS_CTS
I_SERIAL_FLOW_DTR_DSR

I_SERIAL_READ_EOI EOI indicator for reads I_SERIAL_EOI_NONE
I_SERIAL_EOI_BIT8
I_SERIAL_EOI_CHAR | (n)

I_SERIAL_WRITE_EOI EOI indicator for writes I_SERIAL_EOI_NONE
I_SERIAL_EOI_BIT8

I_SERIAL_RESET Interface state (none)
138 Chapter 7

Using SICL with RS-232
Introduction
Function Name Action

iserialstat Gets the following information about the RS-232
interface:

Request Characteristic Value

I_SERIAL_BAUD Data rate 2400, 9600, etc.

I_SERIAL_PARITY Parity I_SERIAL_PAR_*

I_SERIAL_STOP Stop bits / frame I_SERIAL_STOP_*

I_SERIAL_WIDTH Data bits / frame I_SERIAL_CHAR_*

I_SERIAL_DUPLEX Data traffic I_SERIAL_DUPLEX_*

I_SERIAL_MSL Modem status lines I_SERIAL_DCD
I_SERIAL_DSR
I_SERIAL_CTS
I_SERIAL_RI
I_SERIAL_TERI
I_SERIAL_D_DCD
I_SERIAL_D_DSR
I_SERIAL_D_CTS

I_SERIAL_STAT Misc. status I_SERIAL_DAV
I_SERIAL_TEMT
I_SERIAL_PARITY
I_SERIAL_OVERFLOW
I_SERIAL_FRAMING
I_SERIAL_BREAK

I_SERIAL_READ_BUFSZ Receive buffer size Number of bytes

I_SERIAL_READ_DAV Data available Number of bytes

I_SERIAL_FLOW_CTRL Flow control I_SERIAL_FLOW_*

I_SERIAL_READ_EOI EOI indicator for reads I_SERIAL_EOI*

I_SERIAL_WRITE_EOI EOI indicator for writes I_SERIAL_EOI*
Chapter 7 139

Using SICL with RS-232
Introduction
Function Name Action

iserialmclctrl Sets or Clears the modem control lines. Modem control
lines are either I_SERIAL_RTS or I_SERIAL_DTR.

iserialmclstat Gets the current state of the modem control lines.

iserialbreak Sends a break to the instrument. Break time is 10
character times, with a minimum time of 50 milliseconds
and a maximum time of 250 milliseconds.
140 Chapter 7

Using SICL with RS-232
Using RS-232 Device Sessions
Using RS-232 Device Sessions
An RS-232 device session allows direct access to a device, regardless of
the type of interface to which the device is connected. The specifics of the
interface are hidden from the user.

Addressing RS-232 Devices

To create a device session, specify the interface logical unit or symbolic
name, followed by a device logical address of 488. The device address of
488 tells SICL that communication is with a device that uses the
IEEE 488.2 standard command structure. For other interfaces (such as
GPIB), SICL supports the concept of primary and secondary addresses.
However, for RS-232, the only primary address supported is 488. SICL
does not support secondary addressing on RS-232 interfaces.

The interface logical unit and symbolic name are defined by running the
IO Config utility. To open IO Config, click the Agilent IO
Libraries Control and then click Run IO Config. See the Agilent
IO Libraries Installation and Configuration Guide for Windows for information
on IO Config. Some example addresses for RS-232 device sessions
follow.

COM1,488
serial,488

Examples of opening a device session with an RS-232 device follow.

C example:

INST dmm;
dmm = iopen (“com1,488”);

Visual Basic example:

Dim dmm As Integer
dmm = iopen (“com1,488”

NOTE

If a device does not “speak” IEEE 488.2, you can still use SICL to
communicate with the device. However, some SICL functions that work
only with device sessions may not operate correctly. See “SICL Function
Support for RS-232 Device Sessions” for details.
Chapter 7 141

Using SICL with RS-232
Using RS-232 Device Sessions
SICL Function Support for RS-232 Device
Sessions

This section describes how some SICL functions are implemented for
RS-232 device sessions. There are specific device session interrupts that
can be used. See isetintr in Chapter 11 - SICL Language Reference
for information on RS-232 device session interrupts.

iprintf,
iscanf,
ipromptf

SICL’s formatted I/O routines depend on the concept of an
EOI indicator. Since RS-232 does not define an EOI indicator,
SICL uses the newline character (\n) by default.

You cannot change this with a device session. However, you
can use the iserialctrl function with an interface session.
See “ SICL Function Support for RS-232 Interface Sessions”
in this chapter for details.

ireadstb Sends the IEEE 488.2 command *STB? to the instrument,
followed by the newline character (\n). It then reads the ASCII
response string and converts it to an 8-bit integer. This will
work only if the instrument understands this command.

itrigger Sends the IEEE 488.2 command *TRG to the instrument,
followed by the newline character (\n). This will work only
if the instrument understands this command.

iclear Sends a break, aborts any pending writes, discards any data
in the receive buffer, resets any flow control states (such as
XON/XOFF), and resets any error conditions. To reset the
interface without sending a break, use:

iserialctrl (id, I_SERIAL_RESET, 0)

ionsrq Installs a service request handler for this session. Service
requests are supported for both device sessions and interface
sessions. See “SICL Function Support for RS-232 Interface
Sessions” in this chapter for details.
142 Chapter 7

Using SICL with RS-232
Using RS-232 Device Sessions
Example: RS-232 Device Session (C)

This example program takes a measurement from a DVM using a SICL
device session.

/* ser_dev.c
This example program takes a measurement from a DVM
using a SICL device session.

*/
#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

#if !defined(WIN32)
#define LOADDS __loadds

#else
#define LOADDS

#endif

void SICLCALLBACK LOADDS error_handler (INST id, int
error) {

printf (“Error: %s\n”, igeterrstr (error));
exit (1);

}

main()
{

INST dvm;
double res;

#if defined(__BORLANDC__) && !defined(__WIN32__
_InitEasyWin(); /* required for Borland EasyWin

programs */
#endif

NOTE

This example program was tested with a 34401A Digital Voltmeter. When
you run the program with a serial connection to the 34401A, be sure that
DTR/DSR flow control is set for the serial port. Otherwise, the program
will appear not to work.
Chapter 7 143

Using SICL with RS-232
Using RS-232 Device Sessions
/* Log message and terminate on error */
ionerror (error_handler);

/* Open the multimeter session */
dvm = iopen (“COM1,488”);
itimeout (dvm, 10000);

/* Prepare the multimeter for measurements */
iprintf (dvm,”*RST\n”);
iprintf (dvm,”SYST:REM\n”);

/* Take a measurement */
iprintf (dvm,”MEAS:VOLT:DC?\n”);

/* Read the results */
iscanf (dvm,”%lf”,&res);

/* Print the results */
printf (“Result is %f\n”,res);

/* Close the voltmeter session */
iclose (dvm);

/* This call is a no-op for WIN32 programs */
_siclcleanup();

return 0;
}

Example: RS-232 Device Session (Visual Basic)

This example program takes a measurement from a DVM using a SICL
device session.

NOTE

This example program was tested with a 34401A Digital Voltmeter. When
you run the program with a serial connection to the 34401A, be sure that
DTR/DSR flow control is set for the serial port. Otherwise, the program
will appear not to work.
144 Chapter 7

Using SICL with RS-232
Using RS-232 Device Sessions
‘ ser_dev.bas
‘ This example program takes a measurement from a DVM
‘ using a SICL device session.

Sub Main ()
Dim dvm As Integer
Dim res As Double
Dim argcount As Integer

‘ Open the multimeter session
dvm = iopen(“COM1,488”)
Call itimeout(dvm, 10000)

‘ Prepare the multimeter for measurements
argcount = ivprintf(dvm, “*RST” + Chr$(10), 0&)

argcount = ivprintf(dvm, “SYST:REM” + Chr$(10), 0&)

‘ Take a measurement
argcount = ivprintf(dvm, “MEAS:VOLT:DC?” + Chr$(10))

‘ Read the results
argcount = ivscanf(dvm, “%lf”, res)

‘ Print the results
MsgBox “Result is “ + Format(res), MB_ICON_EXCLAMATION

‘ Close the multimeter session
Call iclose(dvm)

‘ Tell SICL to clean up for this task
Call siclcleanup

End Sub
Chapter 7 145

Using SICL with RS-232
Using RS-232 Interface Sessions
Using RS-232 Interface Sessions
RS-232 interface sessions can be used to get or set the characteristics of the
RS-232 interface. Examples of some of these characteristics are baud rate,
parity, and flow control. There are specific interface session interrupts that
can be used. See isetintr in Chapter 11 - SICL Language Reference
for information on RS-232 interface session interrupts.

Addressing RS-232 Interfaces

To create an interface session on RS-232, specify the interface logical unit or
symbolic name in the addr parameter of the iopen function. The interface
logical unit and symbolic name are defined by running the IO Config
utility. To open IO Config, click the Agilent IO Libraries Control
and then click Run IO Config. See the Agilent IO Libraries Installation
and Configuration Guide for Windows for information on IO Config. Some
example addresses for RS-232 interface sessions follow.

These examples open an interface session with the RS-232 interface.

C example:

INST intf;
intf = iopen (“COM1”);

Visual Basic example:

Dim intf As Integer
intf = iopen (“COM1”)

COM1 An interface symbolic name

serial An interface symbolic name

1 An interface logical unit
146 Chapter 7

Using SICL with RS-232
Using RS-232 Interface Sessions
SICL Function Support for RS-232 Interface
Sessions

This section describes how some SICL functions are implemented for
RS-232 interface sessions.

iwrite, iread All I/O functions (non-formatted and formatted) work the
same as for device sessions. However, it is recommended
that all I/O be performed with device sessions to make your
programs easier to maintain.

ixtrig Provides a method of triggering using either the DTR or RTS
modem status line. This function clears the specified modem
status line, waits 10 milliseconds, then sets it again.
Specifying I_TRIG_STD is the same as specifying
I_TRIG_SERIAL_DTR.

itrigger Pulses the DTR modem control line for 10 milliseconds.

iclear Sends a break, aborts any pending writes, discards any data
in the receive buffer, resets any flow control states (such as
XON/XOFF), and resets any error conditions. To reset the
interface without sending a break, use:

 iserialctrl (id, I_SERIAL_RESET, 0)

ionsrq| Installs a service request handler for this session. The
concept of service request (SRQ) originates from GPIB.
On a GPIB interface, a device can request service from the
controller by asserting a line on the interface bus.

RS-232 does not have a specific line assigned as a service
request line. However, you can assign one of the modem
status lines (RI, DCD, CTS, or DSR) as the service request
line by running the IO Config utility.

Any transition on the designated service request line will
cause an SRQ handler in your program to be called. (Be
sure not to set the SRQ line to CTS or DSR if you are also
using that line for hardware flow control.)

Service requests are supported for both device sessions and
interface sessions. When the designated SRQ line changes
state, the RS-232 driver calls all SRQ handlers installed by
either device sessions or interface sessions.
Chapter 7 147

Using SICL with RS-232
Using RS-232 Interface Sessions
iserialctrl Sets the characteristics of the serial interface. The following
requests are clarified:

n I_SERIAL_DUPLEX: The duplex setting determines
whether data can be sent and received
simultaneously. Setting full duplex allows
simultaneous send and receive data traffic. Setting
half duplex (the default) will cause reads and writes to
be interleaved, so that data is flowing in only one
direction at any given time. (The exception to this is if
XON/XOFF flow control is used.)

n I_SERIAL_READ_BUFSZ: The default read buffer
size is 2048 bytes.

n I_SERIAL_RESET: Performs the same function as
the iclear function on an interface session, except
that a break is not sent.

iserialstat Gets the characteristics of the serial interface. The following
requests are clarified:

n I_SERIAL_MSL: Gets the state of the modem status
line. Because of the way Windows supports RS-232,
the I_SERIAL_RI bit will never be set. However, the
I_SERIAL_TERI bit will be set when the RI modem
status line changes from high to low.

n I_SERIAL_STAT: Gets the status of the transmit and
receive buffers and the errors that have occurred
since the last time this request was made. Only the
error bits (I_SERIAL_PARITY,
I_SERIAL_OVERFLOW, I_SERIAL_FRAMING, and
I_SERIAL_BREAK) are cleared. The
I_SERIAL_READ_DAV and I_SERIAL_TEMT bits
reflect the status of the buffers at all times.

n I_SERIAL_READ_DAV: Gets the current amount of
data available for reading. This shows how much data
is in Windows’ receive buffer, not how much data is in
the buffer used by the formatted input functions such
as iscanf.
148 Chapter 7

Using SICL with RS-232
Using RS-232 Interface Sessions
Example: RS-232 Interface Session (C)

/*ser_intf.c
This program gets the current configuration of the
serial port, sets it to 9600 baud, no parity, 8 data

bits, and 1 stop bit, and prints the old configuration.
*/
#include <stdio.h>
#include <sicl.h>

main()
{

INST intf; /* interface session id */
unsigned long baudrate, parity, databits, stopbits;
char *parity_str;

#if defined(__BORLANDC__) && !defined(__WIN32__)
_InitEasyWin(); /* reqd for Borland EasyWin programs */
#endif

/* Log message and exit program on error */
ionerror (I_ERROR_EXIT);

/* open RS-232 interface session */
intf = iopen (“COM1”);
itimeout (intf, 10000);

/* get baud rate, parity, data bits, and stop bits */
iserialstat (intf, I_SERIAL_BAUD, &baudrate);
iserialstat (intf, I_SERIAL_PARITY, &parity);
iserialstat (intf, I_SERIAL_WIDTH, &databits);
iserialstat (intf, I_SERIAL_STOP, &stopbits);

iserial-
mclctrl

Controls the modem control lines RTS and DTR. If one of
these lines is being used for flow control, you cannot set that
line with this function.

iserial-
mclstat

Determines the current state of the modem control lines. If
one of these lines is being used for flow control, this function
may not give the correct state of that line.
Chapter 7 149

Using SICL with RS-232
Using RS-232 Interface Sessions
/* determine string to display for parity */
if (parity == I_SERIAL_PAR_NONE) parity_str = “NONE”;
else if (parity == I_SERIAL_PAR_ODD) parity_str =

“ODD”;
else if (parity == I_SERIAL_PAR_EVEN) parity_str =

“EVEN”;
else if (parity == I_SERIAL_PAR_MARK) parity_str =

“MARK”;
else /*parity == I_SERIAL_PAR_SPACE*/ parity_str =

“SPACE”;

/* set to 9600,NONE,8,1 */
iserialctrl (intf, I_SERIAL_BAUD, 9600);
iserialctrl (intf, I_SERIAL_PARITY,

I_SERIAL_PAR_NONE);
iserialctrl (intf, I_SERIAL_WIDTH, I_SERIAL_CHAR_8);
iserialctrl (intf, I_SERIAL_STOP, I_SERIAL_STOP_1);

 /* Display previous settings */
printf(“Old settings: %5ld,%s,%ld,%ld\n”,

baudrate, parity_str, databits, stopbits);

/* close port */
iclose (intf);

/* This call is a no-op for WIN32 programs. */
_siclcleanup();

return 0;
}

Example: RS-232 Interface Session (Visual Basic)

‘ ser_intf.bas
‘ This program gets the current configuration of the
‘ serial port, sets it to 9600 baud, no parity, 8 data
‘ bits, and 1 stop bit and prints the old configuration

Sub main ()
Dim intf As Integer
Dim baudrate As Long
Dim parity As Long
Dim databits As Long
Dim stopbits As Long
150 Chapter 7

Using SICL with RS-232
Using RS-232 Interface Sessions
Dim parity_str As String
Dim msg_str As String

‘ open RS-232 interface session
intf = iopen(“COM1”)
Call itimeout(intf, 10000)

‘ get baud rate, parity, data bits, and stop bits
Call iserialstat(intf, I_SERIAL_BAUD, baudrate)
Call iserialstat(intf, I_SERIAL_PARITY, parity)
Call iserialstat(intf, I_SERIAL_WIDTH, databits)
Call iserialstat(intf, I_SERIAL_STOP, stopbits)

‘ determine string to display for parity
Select Case parity
Case I_SERIAL_PAR_NONE

parity_str = “NONE”
Case I_SERIAL_PAR_ODD

parity_str = “ODD”
Case I_SERIAL_PAR_EVEN

parity_str = “EVEN”
Case I_SERIAL_PAR_MARK

parity_str = “MARK”
Case Else

parity_str = “SPACE”
End Select

‘ set to 9600,NONE,8, 1
Call iserialctrl(intf, I_SERIAL_BAUD, 9600)
Call iserialctrl(intf, I_SERIAL_PARITY, I_SERIAL_PAR_NONE)
Call iserialctrl(intf, I_SERIAL_WIDTH, I_SERIAL_CHAR_8)
Call iserialctrl(intf, I_SERIAL_STOP, I_SERIAL_STOP_1)

‘ display previous settings
msg_str = “Old settings: “ + Str$(baudrate) + “,” +

parity_str + “,” + Str$(databits) + “,” +
Str$(stopbits)

MsgBox msg_str, MB_ICON_EXCLAMATION

‘ close port
Call iclose(intf)
‘ Tell SICL to clean up for this task
Call siclcleanup

End Sub
Chapter 7 151

Using SICL with RS-232
Using RS-232 Interface Sessions
Notes:
152 Chapter 7

8

Using SICL with LAN
153

Using SICL with LAN

This chapter shows how to open a communications session and
communicate with devices over a Local Area Network (LAN). The
example programs in this chapter are also provided in C\SAMPLES\MISC
(for C/C++) and VB\SAMPLES\MISC (for Visual Basic). The chapter
includes:

n LAN Overview
n Using LAN_gatewayed Sessions
n Using LAN Interface Sessions
n Using Locks and Threads over LAN
n Using Timeouts with LAN
154 Chapter 8

Using SICL with LAN
LAN Overview
LAN Overview
A LAN extends control of instrumentation beyond the limits of typical
instrument interfaces. LAN is only supported with 32-bit SICL on Windows
95, Windows 98, Windows 2000, and Windows NT. LAN is only supported
with 32-bit Visual Basic version 4.0 and above. Also, the GPIO interface is
not supported with SICL over LAN.

The LAN software provided with SICL allows instrumentation control over a
LAN. By using standard LAN connections, instrument control can be driven
from a computer that does not have a special interface for instrument
control. To start or stop the LAN server on a Windows 95, Windows 98,
Windows 2000, or Windows NT system, see the Agilent IO Libraries
Installation and Configuration Guide for Windows.

LAN Client/Server Model

The LAN software provided with SICL uses the client/server model of
computing. Client/server computing refers to a model where an application,
the client, does not perform all the necessary tasks of the application itself.
Instead, the client makes requests of another computing device, the server,
for certain services. Examples that you may have in your workplace include
shared file servers, print servers, or database servers.

The use of LAN for instrument control also provides other advantages
associated with client/server computing, such as resource sharing by
multiple applications/people within an organization or distributed control,
where the computer running the application controlling the devices need
not be in the same room (or even the same building) as the devices.

LAN Hardware Architecture

As shown in the following figure, a LAN client computer system (a Series
700 HP-UX workstation, a Windows 95/98/2000 PC, or a Windows NT PC)
makes SICL requests over the network to a LAN server (a Series 700
HP-UX workstation, a Windows 95/98/2000 PC, a Windows NT PC, or an
E2050 LAN/GPIB Gateway).
Chapter 8 155

Using SICL with LAN
LAN Overview
The LAN server is connected to the instrumentation or devices that must be
controlled. Once the LAN server has completed the requested operation on
the instrument or device, the LAN server sends a reply to the LAN client.
This reply contains any requested data and status information that indicates
whether the operation was successful.

The LAN server acts as a gateway between the LAN that the client system
supports, and the instrument-specific interface that the device supports. Due
to the LAN server’s gateway functionality, we refer to devices or interfaces
that are accessed via one of these LAN-to-instrument_interface gateways as
being a LAN-gatewayed device or a LAN-gatewayed interface.

Using the LAN Client and LAN Server (Gateway)

LAN

Client

Server

Series 700s,
Windows 95/98/2000 PCs

or Windows NT PCs

GPIB bus
(or other)

Instrument GPIB Instrument

GPIB
bus

HP E2050
LAN/GPIB
Gateway

Series 700s,
Windows 95/98/2000 PCs

or Windows NT PCs

Gateway
156 Chapter 8

Using SICL with LAN
LAN Overview
LAN Software Architecture

As shown in the following figure, the client system contains the LAN client
software and the LAN software (TCP/IP) needed to access the server
(gateway). The gateway contains the LAN server software, LAN (TCP/IP)
software, and the instrument driver software needed to communicate with
the client and to control the instruments or devices connected to the
gateway..

LAN Software Architecture

/$1�1HWZRUNLQJ�
3URWRFROV

The LAN software provided with SICL is built on top of standard LAN
networking protocols. There are two LAN networking protocols provided
with the SICL software. You can use one or both of these protocols when
configuring your systems (via the IO Config utility) to use SICL over LAN.

n SICL LAN Protocol is a networking protocol developed by Hewlett-
Packard that is compatible with all existing SICL LAN products.
This LAN networking protocol is the default choice in the IO
Config utility when configuring LAN for SICL. The SICL LAN
Protocol on Windows 95/98/2000 and Windows NT supports SICL
operations over the LAN to GPIB and RS-232 interfaces.

n TCP/IP Instrument Protocol is a networking protocol developed by
the VXIbus Consortium based on the SICL LAN Protocol which
permits interoperability of LAN software from different vendors that
meet the VXIbus Consortium standards.

Application

SICL

LAN Client

TCP

IP

LAN Interface

LAN Interface

IP

TCP
Instrument

Driver

LAN Server

Instrument
Firmware

Client System Server (Gateway)

Instrument

GPIB bus (or other)

LAN
Chapter 8 157

Using SICL with LAN
LAN Overview
This LAN networking protocol may not be implemented with all SICL LAN
products at this time. The TCP/IP Instrument Protocol on Windows 95,
Windows 98, Windows 2000, and Windows NT supports SICL operations
over the LAN to GPIB interface. Also, some SICL operations are not
supported when using the TCP/IP Instrument Protocol.

When using either of these networking protocols, the LAN software provided
with SICL uses the TCP/IP protocol suite to pass messages between the
LAN client and the LAN server. The server accepts device I/O requests over
the network from the client and then proceeds to execute those I/O requests
on a local interface, such as GPIB.

You can use both LAN networking protocols with a LAN client by configuring
both the SICL LAN Protocol and the TCP/IP Instrument Protocol on the LAN
client system using the IO Config utility. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for information on running
IO Config.

Then, use the name of the interface supporting the protocol you want to use
in each SICL iopen call of your program. See “Communicating with LAN
Devices” in this chapter for details on creating communications sessions
with SICL over LAN using each of these protocols. The LAN server does not
support simultaneous connections from LAN clients using the SICL LAN
Protocol and from other LAN clients using the TCP/IP Instrument Protocol.

/$1�&OLHQWV�DQG�
7KUHDGV

You can use multi-threaded designs (where SICL calls are made from
multiple threads) in WIN32 SICL applications over LAN. However, only one
thread is permitted to access the LAN driver at a time. This sequential
handling of individual threads by the LAN driver prevents multiple threads
from colliding or overwriting one another. Requests are handled sequentially
even if they are intended for different LAN servers.

Use multiple processes to process concurrent threads simultaneously with
SICL over LAN. For more information on using threads in SICL applications,
see Chapter 3 - Programming with SICL. Also, see “Using Locks and
Threads over LAN” in this chapter for information on using locks in multi-
threaded applications.
158 Chapter 8

Using SICL with LAN
LAN Overview
/$1�6HUYHUV SICL includes software required to allow a Windows 95, Windows 98,
Wikndows 2000, or Windows NT PC to act as a LAN-to-instrument_interface
gateway. To use this capability, the PC must have a local interface
configured for I/O. The supported interfaces for this release are GPIB and
RS-232 with the SICL LAN Protocol, and GPIB with the TCP/IP Instrument
Protocol.

The LAN server does not support VXI operations with either protocol. Timing
of operations performed remotely over a network will be different from timing
of operations performed locally. The extent of the timing difference will, in
part, depend on the bandwidth of, and the traffic on, the network being used.

SICL LAN Configuration and Performance

As with other client/server applications on a LAN, when deploying an
application that uses SICL over LAN, consideration must be given to the
performance and configuration of the network to which the client and server
will be attached. If the network to be used is not a dedicated LAN or
otherwise isolated via a bridge or other network device, current use of the
LAN must be considered.

Depending on the amount of data to be transferred over the LAN via the
SICL application, performance problems could be experienced by the SICL
application or other network users if sufficient bandwidth is not available.
This is not unique to SICL over LAN, but is a general design consideration
when deploying any client/server application.

If you have questions concerning the ability of your network to handle
SICL traffic, consult with your network administrator or network equipment
providers.

SICL LAN Functions

Function Name Action

ilantimeout Sets LAN timeout value

ilangettimeout Returns LAN timeout value

igetgatewaytype Indicates whether the session is via a LAN gateway
Chapter 8 159

Using SICL with LAN
Using LAN-gatewayed Sessions
Using LAN-gatewayed Sessions
Communicating with a device over LAN vai a LAN-to-instrument_interface
gateway preserves the functionality of the gatewayed-interface with a few
exceptions. (See “SICL Function Support with LAN-gatewayed Sessions”
in this chapter.) Thus, for most operations over an interface (such as GPIB
connected directly to your controller), can also be performed over a remote
interface via the LAN gateway.

The only portions of your application that must be changed are the
addresses passed to the iopen calls (unless those addresses are stored
in a configuration file, in which case no changes to the application itself are
required). The address used for a local interface must have a LAN prefix
added so the SICL software knows to direct the request to a LAN server on
the network.

Addressing Devices/Interfaces with LAN-
gatewayed Sessions

To create a LAN-gatewayed session, specify the LAN’s interface logical unit
or interface name, the IP address or hostname of the server machine, and
the address of the remote interface or device in the addr parameter of the
iopen function. The interface logical unit and interface name are defined by
running the IO Config utility.

To open the the IO Config utility, click the Agilent IO Libraries
Control and then click Run IO Config. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for information on running
IO Config. Some examples of LAN-gatewayed addresses follow.

NOTE

If you are using the IP address of the server machine rather than the
hostname, you must use the bracket (not the comma) notation.

lan,128.10.0.3:gpib (Incorrect)
 lan[128.10.0.3]:gpib (Correct)
160 Chapter 8

Using SICL with LAN
Using LAN-gatewayed Sessions
lan[instserv]:GPIB,7 A device address corresponding to
the device at primary address 7 on
the GPIB interface attached to the
machine named instserv.

lan[instserv.hp.com]:gpib,7 A device address corresponding to
the device at primary address 7 on
the gpib interface attached to the
machine named instserv in the
hp.com domain. (Fully qualified
domain names may be used.)

lan1[128.10.0.3]:GPIB0,3,2 A device address corresponding to
the device at primary address 3,
secondary address 2, on the GPIB0
interface attached to the machine
with IP address 128.10.0.3

lan1[intserv]:GPIB2 An interface address corresponding
to the GPIB2 interface attached to
the machine named intserv.

30,intserv:gpib,3,2 A device address corresponding to
the device at primary address 3,
secondary address 2, on the gpib
interface attached to the machine
named intserv. (30 is the default
logical unit for LAN.)

lan[intserv]:GPIB,cmdr A commander session with the
GPIB interface attached to the
machine named intserv.
(Assuming the server supports
GPIB commander sessions.)
Chapter 8 161

Using SICL with LAN
Using LAN-gatewayed Sessions
This table shows the relationship between the address passed to iopen, the
session type returned by igetsesstype, the interface type returned by
igetintftype, and the value returned by igetgatewaytype.

SICL Function Support with LAN-gatewayed
Sessions

A gatewayed-session to a remote interface provides the same SICL function
support as if the interface was local, with the following exceptions or
qualifications.

For the igetdevaddr, igetintftype, and igetsesstype functions
to be supported with the TCP/IP Instrument Protocol, the remote address
strings must follow the TCP/IP Instrument Protocol naming conventions –
gpib0, gpib1, etc. For example:

gpib0,7
gpib1,7,2
gpib2

Address Session Type Interface Type Gateway Type

lan I_SESS_INTF I_INTF_LAN I_INTF_NONE

lan[instserv]:hpib I_SESS_INTF I_INTF_GPIB I_INTF_LAN

lan[instserv]:hpib,7 I_SESS_DEV I_INTF_GPIB I_INTF_LAN

hpib I_SESS_INTF I_INTF_GPIB I_INTF_NONE

hpib,7 I_SESS_DEV I_INTF_GPIB I_INTF_NONE

Type of Functions SICL Functions NOT Supported

SICL functions not supported
over LAN using either protocol

iblockcopy, imap, imapinfo,
ipeek, ipoke, ipopfifo,
ipushfifo, iunmap

SICL functions, in addition to
those listed above, not sup-
ported with the TCP/IP
Instrument Protocol

All RS-232/serial specific functions
igetlu, ionintr, isetintr,
igetintfsess, igetonintr,
igpibgett1delay, igpibppoll
igpibppollconfig, igpibppollresp,
igpibsett1delay
162 Chapter 8

Using SICL with LAN
Using LAN-gatewayed Sessions
However, since the interface names at the remote server may be
configurable, this is not guaranteed. Correct behavior of iremote and
iclear depend on the correct address strings being used. When iremote
is executed over the TCP/IP Instrument Protocol, iremote also sends the
LLO (local lockout) message in addition to placing the device in the remote
state.

Any of the following functions may timeout over LAN, even those functions
that cannot timeout over local interfaces. (See “Using Timeouts with LAN” in
this chapter for more details.) These functions all cause a request to be sent
to the server for execution.

These SICL functions perform as follows with LAN-gatewayed sessions.

Example: LAN-gatewayed Session (C)

This example program opens a GPIB device session via a LAN-to-GPIB
gateway. This example is the same as the example in Chapter 4 - Usisng
SICL with GPIB, execpt the addresses passed to the iopen calls are
modified. The addresses in this example assume a machine with hostname
instserv is acting as a LAN-to-GPIB gateway.

/* landev.c
This example program sends a scan list to a switch and
while looping closes channels and takes measurements.*/
#include <sicl.h>
#include <stdio.h>

All GPIB specific functions
All RS-232/serial specific functions
iabort, iclear, iclose, iflush, ifread, ifwrite, igetintfsess,
ilocal, ilock, ionintr, ionsrq, iopen, iprintf, ipromptf,
iread, ireadstb, iremote, iscanf, isetbuf, isetintr, isetstb,
isetubuf, itrigger, iunlock, iversion, iwrite, ixtrig

idrvrversion Returns the version numbers from the server.

iwrite, iread actualcnt may be reported as 0 when some bytes
were transferred to or from the device by the server.
This can happen if the client times out while the server
is in the middle of an I/O operation.
Chapter 8 163

Using SICL with LAN
Using LAN-gatewayed Sessions
main() {
INST dvm;
INST sw;

double res;
int i;
/* Print message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter and switch sessions */
dvm = iopen (“lan[instserv]:hpib,9,3”);
sw = iopen (“lan[instserv]:hpib,9,14”);
itimeout (dvm, 10000);
itimeout (sw, 10000);

/*Set up trigger*/
iprintf (sw, “TRIG:SOUR BUS\n”);

/*Set up scan list*/
iprintf (sw,”SCAN (@100:103)\n”);
iprintf (sw,”INIT\n”);

for (i=1;i<=4;i++) {
/* Take a measurement */
iprintf (dvm,”MEAS:VOLT:DC?\n”);

/* Read the results */
iscanf (dvm,”%lf”, &res);

/* Print the results */
printf (“Result is %f\n”,res);
/*Trigger to close channel*/
iprintf (sw, “TRIG\n”);

}
/* Close the multimeter and switch sessions */
iclose (dvm);
iclose (sw);

}

164 Chapter 8

Using SICL with LAN
Using LAN-gatewayed Sessions
Example: LAN-gatewayed Session (Visual Basic)

This example program opens a GPIB device session via a LAN-to-GPIB
gateway. This example is the same as the example in Chapter 4 - Usisng
SICL with GPIB, execpt the addresses passed to the iopen calls are
modified. The addresses in this example assume a machine with hostname
instserv is acting as a LAN-to-GPIB gateway.

‘ landev.bas
‘ This program sends a scan list to a switch and while
‘ looping closes channels and takes measurements.

Attribute VB_Name = “Module1”

Public Sub lanmain()
Dim dvm As Integer, sw As Integer
Dim nargs As Integer, I As Integer
Dim res As Double
Dim actual As Long
Dim res1 As String

‘ Set up an error handler within this subroutine that
‘ will get called if a SICL error occurs.
On Error GoTo ErrorHandler

‘Open the multimeter and switch sessions
dvm = iopen(“lan[intserv]:hpib,9,3”)
sw = iopen(“lan[intserv]:hpib,9,14”)

Call itimeout(dvm, 10000)
Call itimeout(sw, 10000)

‘set up the trigger
nargs = iwrite(id, “TRIG:SOUR BUS” + Chr$(10) + Chr$(0), 14, 1, actual)

‘set up scan list
nargs = iwrite(id, “SCAN (@100:103)” + Chr$(10) + Chr$(0), 15, 1, actual)
nargs = iwrite(id, “INIT” + Chr$(10) + Chr$(0), 5, 1, actual)

For I = 1 To 4 Step 1
nargs = iwrite(id, “MEAS:VOLT:DC?” + Chr$(10) + Chr$(0), 14, 1, actual)
nargs = iread(id, res1, l, &H0&, actual)
Chapter 8 165

Using SICL with LAN
Using LAN-gatewayed Sessions
MsgBox “Result is”
MsgBox res1

nargs = iwrite(id, “TRIG” + Chr$(10) + Chr$(0), 5, 1, actual)
Next I

Dim x As Integer
x = iclose(dvm)
x = iclose(sw)

Exit Sub

ErrorHandler:

‘ Display the error message in the txtResponse TextBox.
txtResponse.Text = “*** Error : “ + Error$
MsgBox txtResponse.Text

‘ Close the device session if iopen was successful.
If id <> 0 Then

iclose (id)
End If

Exit Sub
End Sub
166 Chapter 8

Using SICL with LAN
Using LAN Interface Sessions
Using LAN Interface Sessions
The LAN interface, unlike most other supported SICL interfaces, does not
allow for direct communication with devices via interface commands. LAN
interface sessions, if used at all, will typically be used only for setting the
client side LAN timeout. (See “Using Timeouts with LAN” in this chapter.)

Addressing LAN Interface Sessions

To create a LAN interface session, specify the interface logical unit or
interface name in the addr parameter of the iopen function. The interface
logical unit and interface name are defined by running the IO Config utility.

To open the the IO Config utility, click the Agilent IO Libraries
Control and then click Run IO Config. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for information on running
IO Config. Some examples of LAN interface addresses follow.

SICL Function Support with LAN Interface
Sessions

These SICL functions are not supported over LAN interface sessions and
return I_ERR_NOTSUPP.

lan A LAN interface address using the interface name lan.

30 A LAN interface address using the logical unit 30. (30 is the default
logical unit for LAN.)

All GPIB specific functions
All serial specific functions
All formatted I/O routines
iwrite, iread, ilock, iunlock, isetintr, itrigger, ixtrig,
ireadstb, isetstb, imapinfo, ilocal, iremote
Chapter 8 167

Using SICL with LAN
Using LAN Interface Sessions
These SICL functions perform as follows with LAN interface sessions.

iclear Performs no operation, returns I_ERR_NOERROR.

ionsrq Performs no operation against LAN gateways for SICL,
returns I_ERR_NOERROR.

ionintr Performs no operation, returns I_ERR_NOERROR.

igetluinfo Returns information about local interfaces only. Does not
return information about remote interfaces that are being
accessed via a LAN-to-instrument_interface gateway.
168 Chapter 8

Using SICL with LAN
Using Locks and Threads over LAN
Using Locks and Threads over LAN
If two or more threads are accessing the same device or interface using
two or more different sessions over LAN, and are using SICL locks to
synchronize access, some scenarios may cause timeouts or may “hang”
an application that does not use timeouts. For proper operation, all threads
that use their own sessions to access the same device or interface should
use the same string to identify the device or interface in their calls to iopen.
Therefore, the following scenarios should be avoided.

n Using a hostname to identify the remote host in one call to iopen
while using an alias or IP address to identify the same host in
another call to iopen.

n Using a device symbolic name in one call to iopen (such as ”dmm”,
where “dmm” equals “gpib,1”) while using the fully specified device
name (such as “gpib,1”) in another call.

n Using a remote interface’s logical unit (such as “7”) in one call while
using the remote interface’s symbolic name (such as “gpib”) in
another.

n Using igetintfsess to open an interface session (which
internally uses the logical unit to identify the remote interface)
while opening the interface with its symbolic name for another
session.

You can avoid each scenario by always using the same strings to identify
the same device or interface in multi-threaded applications. You can also
use the igetintfsess function if other sessions use the logical unit to
specify the interface instead of the interface’s symbolic name.

If any thread uses ilock and iunlock to synchronize access to a
particular device or interface, all threads accessing that same device or
interface using a different session must also use ilock and iunlock.
WIN32 synchronization techniques may also be used to ensure that a
thread does not attempt I/O (iread/iwrite, etc.) to a device already
locked via a different session from a different thread within the same
process.
Chapter 8 169

Using SICL with LAN
Using Locks and Threads over LAN
If a session has an interface locked, and if a different thread using its own
session attempts to lock a device on that interface, the device lock will be
held off either until the interface is unlocked by the other thread, or until a
timeout occurs on the device lock. This is different from how ilock works
on other interfaces (where a lock on a device when the device’s interface is
already locked will not hold off the ilock operation, but rather will hold off
any subsequent I/O to the device).
170 Chapter 8

Using SICL with LAN
Using Timeouts with LAN
Using Timeouts with LAN
The client/server architecture of the LAN software requires use of two
timeout values: one for the client and one for the server. The server’s
timeout value is the SICL timeout value specified with the itimeout
function. The client’s timeout value is the LAN timeout value, which may be
specified with the ilantimeout function.

When the client sends an I/O request to the server, the timeout value
specified with itimeout or with the SICL default is passed with the request.
The server uses that timeout in performing the I/O operation, just as if that
timeout value had been used on a local I/O operation.

If the server’s operation is not completed in the specified time, the server
sends a reply to the client that indicates that a timeout occurred, and the
SICL call made by the application returns I_ERR_TIMEOUT.

When the client sends an I/O request to the server, it starts a timer and
waits for the reply from the server. If the server does not reply in the time
specified, the client stops waiting for the reply from the server and returns
I_ERR_TIMEOUT to the application.

LAN Timeout Functions

The ilantimeout and ilangettimeout functions can be used to set or
query the current LAN timeout value. They work much like the itimeout
and igettimeout functions. The use of these functions is optional,
however, since the software will calculate the LAN timeout based on the
SICL timeout in use and the configuration values set via the IO Config
utility.

Once ilantimeout is called by the application, the automatic
LAN timeout adjustment is turned off. See Chapter 11 - SICL Language
Reference for details on the ilantimeout and ilangettimeout
functions.

A timeout value of 1 used with the ilantimeout function has special
significance, causing the LAN client to not wait for a response from the
LAN server. However, the timeout value of 1 should be used only in special
circumstances and should be used with extreme caution. For more
information about this timeout value, see the ilantimeout function in
Chapter 11 - SICL Language Reference.
Chapter 8 171

Using SICL with LAN
Using Timeouts with LAN
Default LAN Timeout Values

The IO Config utility specifies two timeout-related configuration values for
the LAN software. These values are used by the software to calculate
timeout values if the application has not previously called ilantimeout.

Once ilantimeout is called, the software no longer sends the Server
Timeout value to the server and no longer attempts to determine a
reasonable client-side timeout. It is assumed that the application itself wants
full control of timeouts, both client and server. Also, ilantimeout is per
process. That is, all sessions going out over the network are affected when
ilantimeout is called. If the application has not called the ilantimeout
function, timeouts are adjusted via the following algorithm:

n The SICL timeout, which is sent to the server, for the current call is
adjusted if it is currently infinity (0). In that case it will be set to the
Server Timeout value.

n The LAN timeout is adjusted if the SICL timeout plus the Client
Timeout Delta is greater than the current LAN timeout. In that case
the LAN timeout will be set to the SICL timeout plus the Client
Timeout Delta.

n The calculated LAN timeout only increases as necessary to meet
the needs of the application, but never decreases. This avoids the
overhead of readjusting the LAN timeout every time the application
changes the SICL timeout.

Server Timeout Timeout value passed to the server when an application
either uses the SICL default timeout value of infinity or
sets the SICL timeout to infinity (0). Value specifies the
number of seconds the server will wait for the operation
to complete before returning I_ERR_TIMEOUT.

A value of 0 in this field will cause the server to be sent
a value of infinity if the client application also uses the
SICL default timeout value of infinity or sets the SICL
timeout to infinity (0).

Client Timeout
Delta

Value added to the SICL timeout value (server’s timeout
value) to determine the LAN timeout value (client’s
timeout value). Value specifies the number of seconds.
172 Chapter 8

Using SICL with LAN
Using Timeouts with LAN
n The first iopen call used to set up the server connection uses the
Client Timeout Delta specified via the IO Config utility for portions
of the iopen operation. The timeout value for TCP connection
establishment is not affected by the Client Timeout Delta.

To change the defaults:

1. Exit any LAN applications for SICL to be reconfigured.

2. Run the IO Config utility. (Click the Agilent IO Libraries
Control and then click Run IO Config.)

3. Change the Server Timeout and/or Client Timeout Delta value(s).

4. Restart the LAN applications for SICL.

Timeouts in Multi-threaded Applications

To manually set the client side timeout in an application using multiple
threads, be aware that ilantimeout may itself timeout due to contention
for the LAN subsystem where multiple threads in an application are
simultaneously using SICL over LAN.

Thus, if multiple threads are using SICL over LAN at the same time and
LAN timeouts are expected by the application, it is recommended that
ilantimeout be called when no other LAN I/O is occurring, such as
immediately after session creation (iopen).

The use of the ilantimeout No-Wait Value for certain special cases is
described under the ilantimeout function in Chapter 11 - SICL Language
Reference. If the no-wait value is used and multiple threads are attempting
I/O over the LAN, I/O operations using the no-wait option will wait for access
to the LAN for 2 minutes. If another thread is using the LAN interface for
greater than 2 minutes, the no-wait operation will timeout.

Timeout Configurations to Be Avoided

The LAN timeout used by the client should always be set greater than the
SICL timeout used by the server. This avoids the situation where the client
times out while the server continues to attempt the request, potentially
holding off subsequent operations from the same client. This also avoids
having the server send unwanted replies to the client.
Chapter 8 173

Using SICL with LAN
Using Timeouts with LAN
The SICL timeout used by the server should generally be less than infinity.
Having the LAN server wait less than forever allows the LAN server to detect
clients that have ceased operation abruptly or network problems and
subsequently release resources associated with those clients, such as
locks.

Using the smallest possible value for your application will maximize the
server’s responsiveness to dropped connections, including the client
application being terminated abnormally. Setting a value less than infinity is
done by setting the Server Timeout configuration value via the IO Config
utility.

Even if your application uses the SICL default of infinity or if itimeout is
used to set the timeout to infinity, by setting the Server Timeout value to
some reasonable number of seconds, the server will be allowed to timeout
and detect network trouble and release resources.

Application Terminations and Timeouts

If an application is stopped in the middle of a SICL operation performed at
the LAN server, the server continues to try the operation until the server’s
timeout is reached. By default, the LAN server associated with an
application using a timeout of infinity that is stopped may not discover that
the client is no longer running for 2 minutes. For a server other than the LAN
server on HP-UX, Windows 95, Windows 98, Windows 2000, Windows NT,
or the E2050, check that server’s documentation for its default behavior.

If itimeout is used by the application to set a long timeout value, or if both
the LAN client and LAN server are configured to use infinity or a long timeout
value, the server may appear “hung”. If this situation occurs, the LAN client
(via the Client Timeout Delta value set with the IO Config utility) or the
LAN server (via its Server Timeout value) may be configured to use a
shorter timeout value.

If long timeouts must be used, the server may be reset. A LAN server may
be reset by logging into the server system and stopping the LAN server that
is running. The latter procedure will affect all clients connected to the server.
See Chapter 9 - Troubleshooting SICL Programs for more details. Also, see
the documentation of the server you are using for methods to reset the
server.
174 Chapter 8

9

Troubleshooting SICL Programs
175

Troubleshooting SICL Programs

This chapter contains a description of SICL error codes and provides
guidelines to troubleshoot common problems with SICL. The chapter
contents are:

n SICL Error Codes
n Common Windows Problems
n Common RS-232 Problems
n Common GPIO Problems
n Common LAN Problems
176 Chapter 9

Troubleshooting SICL Programs
SICL Error Codes
SICL Error Codes
When you install a default SICL error handler such as I_ERROR_EXIT or
I_ERROR_NOEXIT with an ionerror call, a SICL internal error message
will be logged. To view these messages:

n On Windows 95 or Windows 98, start the Message Viewer
utility by clicking the Agilent IO Libraries Control (on the
taskbar) and then clicking Run Message Viewer. You must
start the Message Viewer utility before you execute a program
for error messages to be logged.

n On Windows NT or Windows 2000, SICL logs internal messages
as Windows NT events that you can view by clicking the Agilent
IO Libraries Control (on the taskbar) and then clicking Run
Event Viewer. Both system and application messages can be
logged to the Event Viewer from SICL. SICL messages are
identified by SICL LOG or by the driver name (such as hp341i32
for the GPIB driver).

For C programs, you can use ionerror to install a custom error handler.
The error handler can call igeterrstr with the given error code and the
corresponding error message string will be returned. See Chapter 3 -
Programming with SICL for more information on error handlers. This table
summarizes SICL error codes and messages.

Error Code Error String Description

I_ERR_ABORTED Externally aborted A SICL call was aborted by external
means.

I_ERR_BADADDR Bad address The device/interface address
passed to iopen does not exist.
Verify that the interface name is the
one assigned with IO Config.

I_ERR_BADCONFIG Invalid
configuration

An invalid configuration was
identified when calling iopen.

I_ERR_BADFMT Invalid format Invalid format string specified for
iprintf or iscanf.

I_ERR_BADID Invalid INST The specified INST id does not have
a corresponding iopen.
Chapter 9 177

Troubleshooting SICL Programs
SICL Error Codes
I_ERR_BADMAP Invalid map
request

The imap call has an invalid map
request.

I_ERR_BUSY Interface is in
use by non-SICL
process

The specified interface is busy.

I_ERR_DATA Data integrity
violation

The use of CRC, Checksum, and so
forth imply invalid data.

I_ERR_INTERNAL Internal error
occurred

SICL internal error.

I_ERR_INTERRUPT Process interrupt
occurred

A process interrupt (signal) has
occurred in your application.

I_ERR_INVLADDR Invalid address The address specified in iopen is
not a valid address (for example,
”hpib,57”).

I_ERR_IO Generic I/O error An I/O error has occurred for this
communication session.

I_ERR_LOCKED Locked by another
user

Resource is locked by another
session (see isetlockwait).

I_ERR_NESTEDIO Nested I/O Attempt to call another SICL function
when current SICL function has not
completed (WIN16). More than one
I/O operation is prohibited.

I_ERR_NOCMDR Commander session
is not active or
available

Tried to specify a commander
session when it is not active,
available, or does not exist.

I_ERR_NOCONN No connection Communication session has never
been established, or connection to
remote has been dropped.

I_ERR_NODEV Device is not
active or
available

Tried to specify a device session
when it is not active, available, or
does not exist.

I_ERR_NOERROR No Error No SICL error returned; function
return value is zero (0).

I_ERR_NOINTF Interface is not
active

Tried to specify an interface session
when it is not active, available, or
does not exist.

Error Code Error String Description
178 Chapter 9

Troubleshooting SICL Programs
SICL Error Codes
I_ERR_NOLOCK Interface not
locked

An iunlock was specified when
device was not locked.

I_ERR_NOPERM Permission denied Access rights violated.

I_ERR_NORSRC Out of resources No more system resources
available.

I_ERR_NOTIMPL Operation not
implemented

Call not supported on this
implementation. The request is
valid, but not supported on this
implementation.

I_ERR_NOTSUPP Operation not
supported

Operation not supported on this
implementation.

I_ERR_OS Generic O.S. error SICL encountered an operating
system error.

I_ERR_OVERFLOW Arithmetic
overflow

Arithmetic overflow. The space
allocated for data may be smaller
than the data read.

I_ERR_PARAM Invalid parameter The constant or parameter passed is
not valid for this call.

I_ERR_SYMNAME Invalid symbolic
name

Symbolic name passed to iopen
not recognized.

I_ERR_SYNTAX Syntax error Syntax error occurred parsing
address passed to iopen. Make
sure you have formatted the string
properly. White space is not
allowed.

I_ERR_TIMEOUT Timeout occurred A timeout occurred on the read/write
operation. The device may be busy,
in a bad state, or you may need a
longer timeout value for that device.
Check also that you passed the
correct address to iopen.

I_ERR_VERSION Version
incompatibility

The iopen call has encountered a
SICL library that is newer than the
drivers. Need to update drivers.

Error Code Error String Description
Chapter 9 179

Troubleshooting SICL Programs
Common Windows Problems
Common Windows Problems

Windows 95 and Windows 98

Subsequent Execution of
SICL Application Fails

If you terminate a program using the Task Manager,
or if a program has an abnormal termination, some
drivers may not unload from memory. This could
cause subsequent attempts to execute the I/O
program to fail. To recover from this situation, you
must restart (reboot) Windows 95/Windows 98.

Windows NT and Windows 2000

Program Appears to
Hang and Cannot Be
Stopped

Check that an itimeout value has been set for all
SICL sessions in your program. Otherwise, when an
instrument does not respond to a SICL read or write,
SICL will wait indefinitely in the SICL kernel access
routine, preventing the application from being
stopped.

To stop the application, click the “toaster” button in
the upper-left corner of the window and then close the
window. After a few seconds, an End Task dialog
box appears. Press the End Task button to stop
the application.

Formatted I/O Using %F
Causes Application Error

Verify $(cvarsdll) is used when compiling the
application, and either $(guilibsdll) for Windows
applications or $(conlibsdll) for console
applications when linking your application.

Also, the %F format character for iprintf only
works with languages that use MSVCRT.DLL,
MSVCRT20.DLL, or MSVCRT40.DLL for their run-time
library.

Some versions of Visual C/C++ and Borland C/C++
use their own versions of the run-time library. They
cannot share global data with SICL’s version of the
run-time library and, therefore, cannot use %F.
180 Chapter 9

Troubleshooting SICL Programs
Common RS-232 Problems
Common RS-232 Problems
Unlike GPIB, special care must be taken to ensure that RS-232 devices are
correctly connected to the computer. Verifying the configuration first may
save many hours of debugging time.

No Response from
Instrument

Be sure the RS-232 interface is configured to match
the instrument. Check the Baud Rate, Parity, Data
Bits, and Stop Bits. Also, be sure you are using the
correct cabling. See Appendix F - RS-232 Cables
for more information on correct cabling.

If you are sending several commands at once, try
sending commands one at a time either by inserting
delays or by single-stepping the program.

Data Received from
Instrument is Garbled

Check the interface configuration. Install an
interrupt handler in your program that checks for
communication errors.

Data Lost During Large
Transfers

Check:
n Flow control setting match

n Full/half duplex for 3-wire connections
n Cabling is correct for hardware handshaking
Chapter 9 181

Troubleshooting SICL Programs
Common GPIO Problems
Common GPIO Problems
Because the GPIO interface has such flexibility, most initial problems come
from cabling and configuration. There are many configuration fields in the
IO Config utility that must be configured for GPIO. For example, no data
transfers will work correctly until the handshake mode and polarity have
been correctly set. A GPIO cable can have up to 50 wires and you may need
to solder your own plug to at least one end. It is important to ensure correct
hardware configuration before you begin troubleshooting the software.

If you are porting an existing 98622 application, the hardware task is
simplified. The cable connections are the same and many IO Config
fields closely approximate 98622 DIP switches. For a new application, an
individual with good hardware skills should become familiar with the E2075
cabling and handshake behavior. In either case, you may want to read the
Agilent E2075 GPIO Interface Card Installation Guide.

Some GPIO-specific reasons for certain SICL errors follow. Many of these
errors can also be caused by non-GPIO problems. For example, “Operation
not supported” will happen on any interface if you execute igetintfsess
with an interface ID.

Bad Address (for iopen)

This indicates iopen did not succeed because the specified address
(symbolic name) did not correspond to a correctly configured entry in
IO Config. If iopen fails, be sure the interface is properly configured.
IO Config establishes an entry for the GPIO card in the Windows 95,
Windows 98, Windows 2000, or Windows NT registry.

We strongly encourage you to let IO Config handle all registry
maintenance for SICL. However, you can edit registry entries manually.
If you manually change the registry and enter an improper configuration
value, the failed iopen may send a diagnostic message to the Message
Viewer (Windows 95/Windows 98) or Event Viewer (Windows NT/
Windows 2000).

For example:

HPe2074: GPIO config, bad read_clk entry
ISA card in slot #0 NOT INITIALIZED (Invalid parameter)
182 Chapter 9

Troubleshooting SICL Programs
Common GPIO Problems
In this case, you must correct the configuration data in the registry. The
recommended procedure is to use IO Config, remove the incorrect
interface name, and create a Configured Interface with legal values
selected from the IO Config utility’s dialog boxes.

Operation Not Supported

The E2075 has several modes. Certain operations are valid in one mode,
and not supported in another. Two examples are:

igpioctrl(id, I_GPIO_AUX, value);

This operation applies only to the Enhanced mode of the data port. Auxiliary
control lines do not exist when the interface is in 98622 Compatibility mode.

igpioctrl(id, I_GPIO_SET_PCTL, 1);

This operation is allowed only in Standard-Handshake mode. When the
interface is in Auto-Handshake mode (the default), explicit control of the
PCTL line is not possible.

No Device

This error indicates PSTS checks were set for read/write operations and a
false state of the PSTS line was detected. Enabling and disabling PSTS
checks is done with:

igpioctrl(id, I_GPIO_CHK_PSTS, value);

If the check seems to be reporting the wrong state of the PSTS line, correct
the PSTS polarity bit via the IO Config utility. If the PSTS check is
functioning properly and this error is generated, some problem with the
cable or the peripheral device is indicated.

Bad Parameter

If the interface is in 16-bit mode, the number of bytes requested in an iread
or iwrite function must be an even number. Although you probably view
16-bit data as words, the syntax of iread and iwrite requires a length
specified as bytes.
Chapter 9 183

Troubleshooting SICL Programs
Common LAN Problems
Common LAN Problems

General Troubleshooting Techniques

Before SICL over LAN can function, the client must be able to talk to the
server over the LAN. You can use the following techniques to determine if
the problem is a general network problem or is specific to the LAN software
provided with SICL.

8VLQJ�WKH�ping�
8WLOLW\

If the application cannot open a session to the LAN server for SICL, the first
diagnostic to try is the ping utility. This utility allows you to test general
network connectivity between client and server machines.

Using ping looks something like the following, where each line after the
Pinging line is an example of a packet successfully reaching the server.

>ping instserv.hp.com
Pinging instserv.hp.com[128.10.0.3] with 32 bytes of data:
Reply from 128.10.0.3:bytes=32 time=10ms TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms TTL=225

However, if ping cannot reach the host, a message similar to the following
is displayed that indicates the client was unable to contact the server. In this
case, you should contact your network administrator to determine if there is
a LAN problem. When the LAN problem has been corrected, you can retry
your SICL application over LAN.

Pinging instserv.hp.com[128.10.0.3] with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

NOTE

Both the LAN client and LAN server may log messages to the Message
Viewer (Windows 95/Windows 98) or Event Viewer (Windows NT/
Windows 2000) under certain conditions, whether or not an error handler
has been registered.
184 Chapter 9

Troubleshooting SICL Programs
Common LAN Problems
8VLQJ�WKH�rpcinfo�
8WLOLW\

Another tool you can use to determine where a problem might reside is the
rpcinfo utility on an HP-UX workstation or other UNIX workstation. This
tool tests whether a client can make an RPC call to a server.

rpcinfo -p. The first rpcinfo option to try is -p, which will print a list of
registered programs on the server:

> rpcinfo -p instserv
program verses proto port
100001 1 udp 1788 rstatd
100001 2 udp 1788 rstatd
100001 3 udp 1788 rstatd
100002 1 udp 1789 rusersd
100002 2 udp 1789 rusersd
395180 1 tcp 1138
395183 1 tcp 1038

Several lines of text may be returned, but the ones of interest for this
example are the lines for programs 395180 for the SICL LAN Protocol
and 395183 for the TCP/IP Instrument Protocol (the port numbers will vary).
If the line for program 395180 or 395183 is not present, your LAN server is
likely misconfigured. Consult your server’s documentation, correct the
configuration problem, and then retry your application.

rpcinfo -t. The second rpcinfo option which can be tried is –t , which will
attempt to execute procedure 0 of the specified program. Lines similar to
the following should be displayed. If not, the server is likely misconfigured or
not running. Consult your server’s documentation, correct the problem, and
then retry your application. See the rpcinfo(1M) man page for more
information.

For the SICL LAN Protocol:

> rpcinfo -t instserv 395180
program 395180 version 1 ready and waiting

For the TCP/IP Instrument Protocol:

> rpcinfo -t instserv 395183
program 395183 version 1 ready and waiting
Chapter 9 185

Troubleshooting SICL Programs
Common LAN Problems
LAN Client Problems

iopen�)DLOV���
6\QWD[�(UURU

In this case, iopen fails with the error I_ERR_SYNTAX. If using the
“lan,net_address” format, ensure that the net_address is a hostname, not
an IP address. If you must use an IP address, specify the address using the
bracket notation, lan[128.10.0.3], rather than the comma notation
lan,128.10.0.3.

iopen�)DLOV���%DG�
$GGUHVV

An iopen fails with the error I_ERR_BADADDR, and the error text is core
connect failed: program not registered. This indicates the
LAN server for SICL has not registered itself on the server machine. This
may also be caused by specifying an incorrect hostname. Ensure that the
hostname or IP address is correct and, if so, check the LAN server’s
installation and configuration.

iopen�)DLOV���
8QUHFRJQL]HG�
6\PEROLF�1DPH

The iopen fails with the error I_ERR_SYMNAME, and the error text is
bad hostname, gethostbyname() failed. This indicates the
hostname used in the iopen address is unknown to the networking
software. Ensure that the hostname is correct and, if so, contact your
network administrator to configure your machine to recognize the hostname.
The ping utility can be used to determine if the hostname is known to your
system. If ping returns with the error Bad IP address, the hostname is
not known to the system.

iopen�)DLOV���
7LPHRXW

An iopen fails with a timeout error. Increase the Client Timeout Delta
configuration value via the IO Config utility. See Chapter 8 - Using
SICL with LAN for more information.

iopen�)DLOV���2WKHU�
)DLOXUHV

An iopen fails with some error other than those already mentioned. Try
the steps at the beginning of this section to see if the client and server can
talk to one another over the LAN. If the ping and rpcinfo procedures
work, check any server error logs that may be available for further clues.
Check for possible problems such as a lack of resources at the server
(memory, number of SICL sessions, etc.).
186 Chapter 9

Troubleshooting SICL Programs
Common LAN Problems
,�2�2SHUDWLRQ�7LPHV�
2XW

An I/O operation times out even though the timeout being used is infinity.
Increase the Server Timeout configuration value via the IO Config utility.
Also, ensure the LAN client timeout is large enough if ilantimeout is
used. See Chapter 8 - Using SICL with LAN for more information.

2SHUDWLRQ�)ROORZLQJ�
D�7LPHG�2XW�
2SHUDWLRQ�)DLOV

An I/O operation following a previous timeout fails to return or takes longer
than expected. Ensure the LAN timeout being used by the system is
sufficiently greater than the SICL timeout being used for the session in
question. The LAN timeout should be large enough to allow for the network
overhead in addition to the time that the I/O operation may take.

If ilantimeout is used, you must determine and set the LAN timeout
manually. Otherwise, ensure the Client Timeout Delta configuration value is
large enough (via the IO Config utility). See Chapter 8 - Using SICL with
LAN for more information.

iopen�)DLOV�RU�
2WKHU�2SHUDWLRQV�
)DLO�'XH�WR�/RFNV

An iopen fails due to insufficient resources at the server or I/O operations
fail because some other session has the device or interface locked. LAN
server connections for SICL from previous clients may not have terminated
properly. Consult your server’s troubleshooting documentation and follow
the instructions for cleaning up any previous server processes.

LAN Server Problems

6,&/�/$1�
$SSOLFDWLRQ�)DLOV���
53&�(UURU

After starting the LAN server, a SICL LAN application fails and returns a
message similar to the following:

RPC_PROG_NOT_REGISTERED

There is a short (approximately 5 second) delay between starting the LAN
server and the LAN server being registered with the Portmapper. Try
running the SICL LAN application again.

rpcinfo�'RHV�1RW�
/LVW�395180�RU�
395183

A rpcinfo query fails to indicate that program 395180 (SICL LAN
Protocol) or 395183 (TCP/IP Instrument Protocol) is available on the server.
If you have not yet started the LAN server, do so now. See the Agilent IO
Libraries Installation and Configuration Guide for Windows for details to start
the LAN server. If you have started the LAN server, try rpcinfo again after
a few seconds to ensure the LAN server had time to register itself.
Chapter 9 187

Troubleshooting SICL Programs
Common LAN Problems
iopen�)DLOV An iopen fails when you run your application, but rpcinfo indicates the
LAN server is ready and waiting. Ensure the requested interface has been
configured on the server. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on using IO Config to
configure interfaces for SICL.

/$1�6HUYHU�$SSHDUV�
³+XQJ´

The LAN server appears “hung” (possibly due to a long timeout being set by
a client on an operation that will never succeed). Login to the LAN server
and stop the hung LAN server process. To stop the LAN server, see the
Agilent IO Libraries Installation and Configuration Guide for Windows.

This action will affect all connected clients, even those that may still be
operational. If informational logging has been enabled using the IO Config
utility, connected clients can be determined by log entries in the Message
Viewer (Windows 95/Windows 98) or Event Viewer (Windows NT/
Windows 2000) utility.

rpcinfo�)DLOV���
FDQ¶W�FRQWDFW�
SRUWPDSSHU

An rpcinfo returns the message rpcinfo: can’t contact
portmapper: RPC_SYSTEM_ERROR - Connection refused .
If the LAN server is not running, start it. If the LAN server is running, stop the
currently running LAN server and then restart it.

Use Ctrl+Alt+Del to display a task list. Ensure that both LAN Server and
Portmap are not running before restarting the LAN server. See the Agilent
IO Libraries Installation and Configuration Guide for Windows for details to
start and stop the LAN server.

rpcinfo �)DLOV���
SURJUDP��������LV�
QRW�DYDLODEOH

An rpcinfo -t server_hostname 395180 1 returns the following
message:

rpcinfo: RPC_SYSTEM_ERROR - Connection refused
program 395180 version 1 is not available

Ensure that the LAN server program is running on the server.

0RXVH�³+XQJ´�
:KHQ�6WRSSLQJ�/$1�
6HUYHU

If. after attempting to stop a LAN server via either Ctrl+C or the Windows
95,Windows 98, Windows 2000, or Windows NT x-button (in the upper-right
hand corner of the window), the mouse may appear to be “hung”. Press any
keyboard key and the LAN server will stop and the mouse will again be
operational.
188 Chapter 9

10
More SICL Example Programs
189

More SICL Example Programs

This chapter contains two example programs that give guidelines to help you
develop SICL applications. The chapter contents are:

n Example: Oscilloscope Program (C)
n Example: Oscilloscope Program (Visual Basic)
190 Chapter 10

More SICL Example Programs
Example: Oscillosope Program (C)
Example: Oscillosope Program (C)
This C example programs an oscilloscope (such as an Agilent 54601),
uploads the measurement data, and instructs the oscilloscope to print its
display to a ThinkJet printer. This program uses many SICL features and
illustrates some important C and Windows programming techniques for
SICL.

Program Files

The oscilloscope example files are located in the C\SAMPLES\SCOPE
subdirectory under the SICL base directory. The subdirectory contains the
source program and a number of files to help you build the example with
specific compilers, depending on the Windows environment used.

SCOPE.C Example program source file.

SCOPE.H Example program header file.

SCOPE.RC Example program resource file.

SCOPE.DEF Example program module definitions file.

SCOPE.ICO Example program icon file.

VCSCP32.MAK Windows 95, Windows 98, Windows 2000, or
Windows NT project file for Microsoft Visual C++.

BCSCP32.IDE Windows 95, Windows 98, Windows 2000, or
Windows NT project file for Borland C Integrated
Development Environment.
Chapter 10 191

More SICL Example Programs
Example: Oscillosope Program (C)
Building the Project File

This section shows how to create the project file for this example using
Microsoft Visual C. You can also load the makefile directly from the
C\SAMPLES\SCOPE subdirectory, if you desire. If you are using another
language tool, choose the appropriate project file or makefile from the
C\SAMPLES\SCOPE subdirectory. To compile and link the example program
with Microsoft Visual C:

1. Select File | New from the menu and select Project from
the list box that appears. Then click OK.

2. The New Project dialog box is now displayed. Type the name
you want for the project in the edit box labeled Project Name.
Then, select Application from the Project Type list box.
Select the directory location for the project in the Directory list
box and click the Create button.

3. The Project Files dialog box is now displayed. Double-click
the source files scope.c, scope.rc, and scope.def to add
them to the project. Also add sicl32.lib from the SICL C
directory. Then, click the Close button.

4. Select Project | Settings from the menu and click the
C\C++ button. Select Code Generation from the Category
list box. Then, select Multithreaded Using DLL from the
Use Run-Time Library list box and click OK.

5. Select Tools | Options from the menu and click the
Directories button in the Options dialog box. Select
Include Files from the Show Directories for: list box
and click the Add button. Then, type \SICL\C and click OK.

6. Select Project | Build to build the application.

If there are no errors reported, you can execute the program by selecting
Project | Execute. An application window will open. Several commands
are available from the Actions menu, and any results or output will be
printed in the program window. To end the program, select File | Exit
from the program menu.
192 Chapter 10

More SICL Example Programs
Example: Oscillosope Program (C)
Program Overview

&XVWRP�(UURU�
+DQGOHU

The oscilloscope program defines a custom error handler that is called
whenever an error occurs during a SICL call. The handler is installed using
ionerror before any other SICL function call is made, and will be used for
all SICL sessions created in the program.

void SICLCALLBACK my_err_handler(INST id, int error)
{

...
sprintf(text_buf[num_lines++],

“session id=%d, error = %d:%s”, id, error,
igeterrstr(error));

sprintf(text_buf[num_lines++], “Select ‘File | Exit’
to exit program!”);

...
// If error is from scope, disable I/O actions by

graying out menu picks.
if (id == scope) {

... code to disallow further I/O requests from user
}

}

The error number is passed to the handler, and igeterrstr is used to
translate the error number into a more useful description string. If desired,
different actions can be taken depending on the particular error or id that
caused the error.

NOTE

You may want to view the program with an editor as you read through
this section. The entire program is not listed here because of its length.
This illustrates specific SICL features and programming techniques and
is not meant to be a robust Windows application. See Chapter 11 - SICL
Language Reference or the SICL online Help for detailed information on
the SICL features used in this program.
Chapter 10 193

More SICL Example Programs
Example: Oscillosope Program (C)
/RFNV SICL allows multiple applications to share the same interfaces and devices.
Different applications may access different devices on the same interface, or
may alternately access the same device (a shared resource). If your
program will be executing along with other SICL applications, you may want
to prevent another application from accessing a particular interface or device
during critical sections of your code. SICL provides the ilock/iunlock
functions for this purpose.

void get_data (INST id)
{

... non-SICL code

/* lock device to prevent access from other applications */
ilock(scope);

...
SICL I/O code to program scope and get data

/* release the scope for use by other applications */
iunlock(scope);

... non-SICL code
}

Lock the interface or device with ilock before critical sections of code,
and release the resource with iunlock at the end of the critical section.
Using ilock on a device session prevents any other device session from
accessing the particular device. Using ilock on an interface session
prevents any other session from accessing the interface and any device
connected to the interface.

See isetlockwait in Chapter 11 - SICL Language Reference to
determine actions that can be taken when a SICL call in your code
attempts to access a resource that is locked by another session.

)RUPDWWHG�,�2 SICL provides extensive formatted I/O functionality to help facilitate
communication of I/O commands and data. The example program uses a
few of the capabilities of the iprintf/iscanf/ipromptf functions and
their derivatives.
194 Chapter 10

More SICL Example Programs
Example: Oscillosope Program (C)
The iprintf function is used to send commands. As with all of the
formatted I/O functions, the data is actually buffered. In this call, the \n
at the end of the format:

 iprintf(id,”:waveform:preamble?\n”);

causes the buffer to be flushed and the string to be output. If desired,
several commands can be formatted before being sent and then all
commands outputted at once. The formatted I/O buffers are automatically
flushed whenever the buffer fills (see isetbuf) or when an iflush call is
made.

When reading data back from a device, the iscanf function is used. To
read the preamble information from the oscilloscope, use the format string
“%,20f\n”:

iscanf(id,”%,20f\n”,pre);

This string expects to input 20 comma-separated floating point numbers
into the pre array.

To upload the oscilloscope waveform data, use the string “%#wb\n”.
The wb indicates that iscanf should read word-wide binary data.
The # preceding the data modifer tells iscanf to get the maximum number
of binary words to read from the next parameter (&elements):

iscanf(id,”%#wb\n”,&elements,readings);

The read will continue until an EOI indicator is received or the maximum
number of words have been read.

,QWHUIDFH�6HVVLRQV Sometimes it may be necessary to control the GPIB bus directly instead of
using SICL commands. This is accomplished using an interface session and
interface-specific commands. This example uses igetintfsess to get a
session for the interface to which the oscilloscope is connected. (If you know
which interface is being used, it is also possible to just use an iopen call on
that interface.)

Then, igpibsendcmd is used to send some specific command bytes on
the bus to tell the printer to listen and the oscilloscope to send its data. The
igpibatnctl function directly controls the state of the ATN signal on the
bus.
Chapter 10 195

More SICL Example Programs
Example: Oscillosope Program (C)
void print_disp (INST id)
{

INST hpibintf ;
...

hpibintf = igetintfsess(id);
...

/* tell oscilloscope to talk and printer to listen
the listen command is formed by adding 32 to the
device address of the device to be a listener.
The talk command is formed by adding 64 to the
device address ofthe device to be a talker. */

cmd[0] = (unsigned char)63 ; /* 63 is unlisten */
cmd[1] = (unsigned char)(32+1) ; /* printer at addr 1,

make it a listener */
cmd[2] = (unsigned char)(64+7) ; /* scope at addr 7,

make it a talker */
cmd[3] = ‘\0’; /* terminate the string */

length = strlen (cmd) ;

igpibsendcmd(hpibintf,cmd,length);
igpibatnctl(hpibintf,0);

...
}

654V�DQG�
iwaithdlr

Many instruments are capable of using the service request (SRQ) signal
on the GPIB bus to signal the controller that an event has occurred. If an
application needs to respond to SRQs, an SRQ handler must be installed
with the ionsrq call. All SRQ handlers are called whenever an SRQ occurs.

In the example handler, the oscilloscope status is read to verify that the
oscilloscope asserted SRQ, and then the SRQ is cleared and a status
message is displayed. If the oscilloscope did not assert SRQ, the handler
prints an error message.
196 Chapter 10

More SICL Example Programs
Example: Oscillosope Program (C)
void SICLCALLBACK my_srq_handler(INST id)
{

unsigned char status;

/* make sure it was the scope requesting service */
ireadstb(id,&status);

if (status &= 64) {
/* clear the status byte so the scope can assert

SRQ again if needed. */
iprintf(id,”*CLS\n”);

sprintf(text_buf[num_lines++],
“id = %d, SRQ received!, stat=0x%x”, id,status);

} else {
sprintf(text_buf[num_lines++],

“SRQ received, but not from the scope”);
}
InvalidateRect(hWnd, NULL, TRUE);

}

In the routine that commands the oscilloscope to print its display, the
oscilloscope is set to assert SRQ when printing is finished. While the
oscilloscope is printing, the example program has the application suspend
execution. SICL provides the function iwaithndlr that will suspend
execution and wait until either an event occurs that would call a handler,
or a specified timeout value is reached.

In the example, interrupt events are turned off with iintroff so that all
interrupts are disabled while interrupts are being set up. Then, the SRQ
handler is installed with ionsrq. Code to program the oscilloscope to print
and send an SRQ is next, then the call to iwaithdlr, with a timeout value
of 30 seconds. When the oscilloscope finishes printing and sends the SRQ,
the SRQ handler will be executed and then iwaithdlr will return. A call to
iintron re-enables interrupt events.

void print_disp (INST id)
{

...

iintroff();
ionsrq(id,my_srq_handler);/* Not supported on 82335 */

/* tell the scope to SRQ on ‘operation complete’ */
iprintf(id,”*CLS\n”);
Chapter 10 197

More SICL Example Programs
Example: Oscillosope Program (C)
iprintf(id,”*SRE 32 ; *ESE 1\n”) ;

/* tell the scope to print */
iprintf(id,”:print ; *OPC\n”) ;

... code to tell the scope to print

/* wait for SRQ before continuing program */

iwaithdlr(30000L);
iintron();

sprintf (text_buf[num_lines++],”Printing complete!”) ;
...

}

198 Chapter 10

More SICL Example Programs
Example: Oscillosope Program (Visual Basic)
Example: Oscillosope Program (Visual
Basic)
This Visual Basic example program uses SICL to get and plot waveform
data from an Agilent 54601A (or compatible) oscilloscope. This routine is
called each time the cmdGetWaveform command button is clicked.

Program Files

The oscilloscope example files are located in the VB\SAMPLES\SCOPE
subdirectory under the SICL base directory. The files are:

Loading and Running the Program

Follow these steps to load and run the SCOPE sample program:

1. Connect an Agilent 54601A oscilloscope to your interface.

2. Run Visual Basic.

3. Open the project file SCOPE.MAK by selecting File | Open
Project from the Visual Basic menu.

4. Edit the SCOPE.FRM file to set the scope_address constant
to the address of your oscilloscope. To do this:

a. Select Window | Procedures from the Visual Basic
menu. A View Procedure dialog box will appear.

b. Select SCOPE.FRM from the Modules list box and
declarations) from the Procedures list box.
Then, click OK.

c. Edit the following line so the address is set to the address
of the oscilloscope:

SCOPE.FRM Visual Basic source for the SCOPE example program.

SCOPE.MAK Visual Basic project file for the SCOPE example
program.
Chapter 10 199

More SICL Example Programs
Example: Oscillosope Program (Visual Basic)
 >> Const scope_address = “hpib7,7”

5. Run the program by pressing the F5 key or the RUN button on the
Visual Basic Toolbar.

6. Press the Waveform button to get and display the waveform.

7. Press the Integral button to calculate and display the integral.

After performing these steps, you can create a standalone executable
(.EXE) version of this program by selecting File | Make EXE File
from the Visual Basic menu.

Program Overview

FPG*HW:DYHIRUPB
&OLFN

Subroutine that is called when the cmdGetWaveform command button is
pressed. The command button is labeled Waveform.

2Q�(UURU This Visual Basic statement enables an error handling routine within a
procedure. In this example, an error handler is installed starting at label
ErrorHandler within the cmdOutputCmd_Click subroutine. The error
handling routine is called any time an error occurs during the processing
of the cmdGetWaveform_Click procedure. SICL errors are handled in the
same way that Visual Basic errors are handled with the On Error
statement.

FPG*HW:DYHIRUP�
(QDEOHG

The button that causes the cmdGetWaveform_Click routine to be called
is disabled when code is executing inside cmdOutputCmd_Click. This is
good programming style.

NOTE

You may want to view the program with an editor as you read through
this section. The entire program is not listed here because of its length.
This illustrates specific SICL features and programming techniques and
is not meant to be a robust Windows application. See Chapter 11 - SICL
Language Reference or the SICL online Help for detailed information on
the SICL features used in this program.
200 Chapter 10

More SICL Example Programs
Example: Oscillosope Program (Visual Basic)
LRSHQ An iopen call is made to open a device session for the oscilloscope.
The device address for the oscilloscope is in the scope_address string.
In this example, the default address is “hpib7,7”. The interface name
“hpib7” is the name given to the interface with the IO Config utility. The
bus (primary) address of the oscilloscope follows, in this case 7. You may
want to change the scope_address string to specify the correct address
for your configuration.

LJHWLQWIVHVV igetintfsess is called to return an interface session id for the interface
to which the oscilloscope instrument is connected. This interface session will
be used by the following iclear call to send an interface clear to reset the
interface.

LFOHDU The iclear function is called to reset the interface.

LWLPHRXW itimeout is called to set the timeout value for the oscilloscope’s device
session to 3 seconds.

LYSULQWI The ivprintf function is called four times to set up the oscilloscope and
then request the oscilloscope’s preamble information. In each case
Chr$(10) is appended to the format string passed as the second argument
to ivprintf. This tells ivprintf to flush the formatted I/O write buffer
after writing the string specified in the format string. Also, 0& is used to
specify a NULL pointer for the third argument to ivprintf. A NULL
pointer must be passed as the third argument since no argument
conversion characters were specified in the format string for ivprintf.

LYVFDQI The ivscanf function is called to read the oscilloscope’s preamble
information into the preamble array. The first element of the preamble array
is passed as the third parameter to ivscanf. This passes the address of
the first element of the preamble array to the ivprintf SICL function.

LYSULQWI ivprintf is called to prompt the oscilloscope for its waveform data.
Again, Chr$(10) is appended to the format string passed as the second
argument to ivprintf. This tells ivprintf to flush the formatted I/O
write buffer after writing the string specified in the format string. Also, 0& is
used to specify a NULL pointer for the third argument to ivprintf, since
no additional arguments were specified in the format string.
Chapter 10 201

More SICL Example Programs
Example: Oscillosope Program (Visual Basic)
LYVFDQI ivscanf is called to read in the oscilloscope’s waveform. The waveform is
read in as an arbitrary block of data. The format string passed as the second
parameter to ivscanf specifies a maximum of 4000 Integer values that can
be read into the array. Also, the first element of the waveform array is
passed as the third parameter to ivscanf. This passes the address of the
first element of the waveform array to the SICL ivscanf function.

LFORVH The iclose subroutine closes the scope_id device session for the
oscilloscope as well as the intf_id interface session obtained with
igetintfsess.

FPG*HW:DYHIRUP�
(QDEOHG

The button that causes the cmdGetWaveform_Click routine to be called
is re-enabled when execution inside cmdGetWaveform_Click is finished.
This allows the program to get another waveform.

([LW�6XE This Visual Basic statement causes the cmdGetWaveform_Click
subroutine to be exited after normal processing has completed.

HUURUKDQGOHU: This label specifies the beginning of the error handler that was installed for
this subroutine. This handler is called whenever a run-time error occurs.

(UURU� This Visual Basic function is called to get the error message for the error.

LFORVH The iclose subroutine is called inside the error handler to close the
scope_id device session for the oscilloscope as well as the intf_id
interface session obtained with igetintfsess.

FPG*HW:DYHIRUP�
(QDEOHG

This re-enables the button that causes the cmdGetWaveform_Click
routine to be called. This allows the program to get another waveform.

([LW�6XE This Visual Basic statement causes the cmdGetWaveform_Click
subroutine to be exited after processing an error in the subroutine’s error
handler.
202 Chapter 10

11
SICL Language Reference
203

SICL Language Reference

This chapter defines all supported SICL functions, listed in alphabetical
order. The chapter includes an introduction that describes the format and
content for each function, and an alphabetical listing of each function.
204 Chapter 11

Introduction
Introduction
Each SICL function description includes:

n C syntax and Visual Basic syntax (if the function is supported on
Visual Basic)

n Complete description
n Return value(s)
n Related SICL functions

This edition describes syntax structure to program SICL applications in
Visual Basic version 4.0 or later. For SICL applications written in Visual
Basic versions less than version 4.0, you can port the applications to Visual
Basic version 4.0 or greater. See Appendix B - Porting to Visual Basic. You
may also want to see:

n Appendix C - SICL Error Codes which lists all SICL error codes.
n Appendix D - SICL Function Summary which summarizes supported

features of each core and interface-specific SICL function.

Function Specifics

Category Description

Session Identifiers SICL uses session identifiers to refer to specific SICL
sessions. The iopen function creates a SICL session
and returns a session identifier. A session identifier is
needed for most SICL functions. For the C and C++
languages, SICL defines the variable type INST.

C and C++ programs should declare session identifiers to
be of type INST. For example:

INST id;

Visual Basic programs should declare session identifiers
to be of type Integer. For example:

DIM id As Integer

Device, Interface,
and Commander
Sessions

Some SICL functions are supported on device sessions,
some on interface sessions, some on commander sessions,
and some on all three. The listing for each function indicates
which sessions support that function.
 11 205

Introduction
Functions
Affected by
Locks

Some functions are affected by locks (see the ilock
function). This means that if the device or interface that the
session refers to is locked by another process, this function
will block and wait for the device or interface to be unlocked
before it will succeed, or it will return immediately with the
error I_ERR_LOCKED. Refer to the isetlockwait function.

Functions
Affected by
Timeouts

Some functions are affected by timeouts (see the itimeout
function). This means that if the device or interface that the
session refers to is currently busy, this function will wait for the
amount of time specified by itimeout to succeed. If it
cannot, it will return the error I_ERR_TIMEOUT.

Per-Process
Functions

Functions that do not support sessions and are not affected
by ilock or itimeout are per-process functions. The SICL
function ionerror is an example of this. The ionerror
function installs an error handler for the process. As such, it
handles errors for all sessions in the process regardless of the
type of session.

Category Description
206 11

SICL Language Reference
IBLOCKCOPY
IBLOCKCOPY
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ibblockcopy (id, src, dest, cnt);
INST id;
unsigned char *src;
unsigned char *dest;
unsigned long cnt;

int iwblockcopy (id, src, dest, cnt, swap);
INST id;
unsigned char *src;
unsigned char *dest;
unsigned long cnt;
int swap;

int ilblockcopy (id, src, dest, cnt, swap);
INST id;
unsigned char *src;
unsigned char *dest;
unsigned long cnt;
int swap;

Visual Basic Syntax
Function ibblockcopy
(ByVal id As Integer, ByVal src As Long,
 ByVal dest As Long, ByVal cnt As Long)

Function iwblockcopy
(ByVal id As Integer, ByVal src As Long,
 ByVal dest As Long, ByVal cnt As Long,
 ByVal swap As Integer)

Function ilblockcopy
(ByVal id As Integer, ByVal src As Long,
 ByVal dest As Long, ByVal cnt As Long,
 ByVal swap As Integer)
Chapter 11 207

SICL Language Reference
IBLOCKCOPY
Description

This function is not supported over LAN. The three forms of iblockcopy
assume three different types of data: byte, word, and long word (8 bit, 16 bit,
and 32 bit). The iblockcopy functions copy data from memory on one
device to memory on another device. They can transfer entire blocks of
data.

The id parameter, although specified, is normally ignored except to
determine an interface-specific transfer mechanism such as DMA. To
prevent using an interface-specific mechanism, pass a zero (0) for this
parameter.

The src argument is the starting memory address for the source data. The
dest argument is the starting memory address for the destination data. The
cnt argument is the number of transfers (bytes, words, or long words) to
perform.

The swap argument is the byte swapping flag. If swap is zero, no swapping
occurs. If swap is non-zero the function swaps bytes (if necessary) to
change byte ordering from the internal format of the controller to/from the
VXI (big-endian) byte ordering.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs.

For Visual Basic programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also
IPEEK, IPOKE, IPOPFIFO, IPUSHFIFO

NOTE

If a bus error occurs, unexpected results may occur.
208 Chapter 11

SICL Language Reference
IBLOCKMOVEX
IBLOCKMOVEX
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iblockmovex (id, src_handle, src_offset, src_width,
src_increment, dest_handle, dest_offset,
dest_width, dest_increment, cnt, swap);

INST id;
unsigned long src_handle;
unsigned long src_offset;
int src_width;
int src_increment;
unsigned long dest_handle;
unsigned long dest_offset;
int dest_width;
int dest_increment;
unsigned long cnt;
int swap;

Visual Basic Syntax
Function iblockmovex
(ByVal id As Integer, ByVal src_handle As Long,
ByVal src_offset as Long, ByValue src_width as Integer,
ByVal src_increment as Integer, ByVal dest_handle As Long,
ByVal dest_offset as Long, ByVal dest_width as Integer,
ByVal dest_increment as Integer, ByVal cnt As Long,
ByVal swap As Integer)

NOTE

Not supported over LAN. If either the src_handle or the dest_handle is
NULL, the handle is assumed to be for local memory. In this case, the
corresponding offset is a valid memory address.
Chapter 11 209

SICL Language Reference
IBLOCKMOVEX
Description

iblockmovex moves data (8-bit byte, 16-bit word, and 32-bit long word).
from memory on one device to memory on another device. This function
allows local-to-local memory copies (both src_handle and dest_handle are
zero), VXI-to-VXI memory transfers (both src_handle and dest_handle are
valid handles), local-to-VXI memory transfers (src_handle is zero,
dest_handle is valid handle), or VXI-to-local memory transfers (src_handle is
valid handle, dest_handle is zero). If a bus error occurs, unexpected results
may occur.

The id parameter is the value returned from iopen. If the id parameter is
zero (0) then all handles must be zero and all offsets must be either local
memory or directly dereferencable VXI pointers.

The src_handle argument is the starting memory address for the source
data. The dest_handle argument is the starting memory address for the
destination data. These handles must either be valid handles returned from
the imapx function (indicating valid VXI memory), or zero (0) indicating local
memory.

Both src_width and dest_width must be the same value. They specify the
width (in number of bits) of the data. Specify them as 8, 16, or 32. Offset
values (src_offset and dest_offset) are generally used in memory transfers
to specify memory locations. The increment parameters specify whether or
not to increment memory addresses.

The cnt argument is the number of transfers (bytes, words, or long words) to
perform. The swap argument is the byte swapping flag. If swap is zero, no
swapping occurs. If swap is non-zero the function swaps bytes (if necessary)
to change byte ordering from the internal format of the controller to/from the
VXI (big-endian) byte ordering.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs.

For Visual Basic programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also

IPEEKX8, IPEEKX16, IPEEKX32, IPOKEX8, IPOKEX16, IPOKEX32,
IPOPFIFO, IPUSHFIFO, IDEREFPTR
210 Chapter 11

SICL Language Reference
ICAUSEERR
ICAUSEERR
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

void icauseerr (id, errcode, flag);
INST id;
int errcode;
int flag;

Visual Basic Syntax
Sub icauseerr
(ByVal id As Integer, ByVal errcode As Integer,
 ByVal flag As Integer)

Description

Occasionally it is necessary for an application to simulate a SICL error. The
icauseerr function performs that function. This function causes SICL to
act as if the error specified by errcode (see Appendix C - SICL Error Codes
for a list of errors) has occurred on the session specified by id. If flag is �,
the error handler associated with this process is called (if present).
Otherwise, the error handler is not called.

On operating systems that support multiple threads, the error is per-thread,
and the error handler will be called in the context of this thread.

See Also

IONERROR, IGETONERROR, IGETERRNO, IGETERRSTR
Chapter 11 211

SICL Language Reference
ICLEAR
ICLEAR
Supported sessions: . device, interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iclear (id);
INST id;

Visual Basic Syntax
Function iclear
(ByVal id As Integer)

Description

Use the iclear function to clear a device or interface. If id refers to a
device session, this function sends a device clear command. If id refers to
an interface, this function sends an interface clear command.

The iclear function also discards the data in both the read and the write
formatted I/O buffers. This discard is equivalent to performing the following
iflush call (in addition to the device or interface clear function):

iflush (id, I_BUF_DISCARD_READ | I_BUF_DISCARD_WRITE);

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IFLUSH and the interface-specific chapter for details of implementation.
212 Chapter 11

SICL Language Reference
ICLOSE
ICLOSE
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int iclose (id);
INST id;

Visual Basic Syntax
Function iclose
(ByVal id As Integer)

Description

Once you no longer need a session, close it using the iclose function.
This function closes a SICL session. After calling this function, the value in
the id parameter is no longer a valid session identifier and cannot be used
again.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IOPEN

NOTE

Do not call iclose from an SRQ or interrupt handler, as it may cause
unpredictable behavior.
Chapter 11 213

SICL Language Reference
IDEREFPTR
IDEREFPTR
Supported Sessions: device, interface, commander

C Syntax
#include <sicl.h>

int idereptr (id, handle, *value);
INST id;
unsigned long handle;
unsigned char *value;

Visual Basic Syntax
Function iderefptr
(ByVal id as Integer, ByVal handle as Long,

ByVal value as Integer)

Description

This function tests the handle returned by imapx. The id is the valid SICL
session id returned from the iopen function, handle is the valid SICL map
handle obtained from the imapx function.

This function sets *value to zero (0) if imap or imapx returns a map handle
that cannot be used as a memory pointer; you must use ipeekx8,
ipeekx16, ipeekx32, ipokex8, ipokex16, ipokex32, or
iblockmovex functions. Alternately, the function returns a non-zero value
if imapx returns a valid memory pointer that can be directly dereferenced.

Return Value

For C programs, this function returns zero (0) if successful or it returns a
non-zero error number if an error occurs. For Visual Basic programs, no
error number is returned. Instead, the global Err variable is set if an error
occurs.

See Also

IMAPX, IUNMAPX, IPEEKX8, IPEEKX16, IPEEKX32, IPOKEX8,
IPOKEX16, IPOKEX32, IBLOCKMOVEX
214 Chapter 11

SICL Language Reference
IFLUSH
IFLUSH
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iflush (id, mask);
INST id;
int mask;

Visual Basic Syntax
Function iflush
(ByVal id As Integer, ByVal mask As Integer)

Description

This function is used to manually flush the read and/or write buffers used by
formatted I/O. The mask may be one or a combination of the following flags:

The I_BUF_READ and I_BUF_WRITE flags may be used together (by
OR-ing them together), and the I_BUF_DISCARD_READ and
I_BUF_DISCARD_WRITE flags may be used together. Other combinations
are invalid.

I_BUF_READ Indicates the read buffer (iscanf). If data is
present, it will be discarded until the end of data
(that is, if the END indicator is not currently in the
buffer, reads will be performed until it is read).

I_BUF_WRITE Indicates the write buffer (iprintf). If data is
present, it will be written to the device.

I_BUF_WRITE_END Flushes the write buffer of formatted I/O
operations and sets the END indicator on the last
byte (for example, sets EOI on GPIB).

I_BUF_DISCARD_READ Discards the read buffer (does not perform
I/O to the device).

I_BUF_DISCARD_WRITE Discards the write buffer (does not perform
I/O to the device).
Chapter 11 215

SICL Language Reference
IFLUSH
If iclear is called to perform either a device or interface clear, both the
read and the write buffers are discarded. Performing an iclear is
equivalent to performing the following iflush call (in addition to the device
or interface clear function):

iflush (id, I_BUF_DISCARD_READ | I_BUF_DISCARD_WRITE);

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IPRINTF, ISCANF, IPROMPTF, IFWRITE, IFREAD, ISETBUF, ISETUBUF,
ICLEAR
216 Chapter 11

SICL Language Reference
IFREAD
IFREAD
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ifread (id, buf, bufsize, reason, actualcnt);
INST id;
char *buf;
unsigned long bufsize;
int *reason;
unsigned long *actualcnt;

Visual Basic Syntax
Function ifread
(ByVal id As Integer, buf As String,
 ByVal bufsize As Long, reason As Integer,
 actual As Long)

Description

This function reads a block of data from the device via the formatted I/O read
buffer (the same buffer used by iscanf). The buf argument is a pointer to
the location where the block of data can be stored. The bufsize argument is
an unsigned long integer containing the size, in bytes, of the buffer specified
in buf.

The reason argument is a pointer to an integer that, upon exiting ifread,
contains the reason why the read terminated. If the reason parameter
contains a zero (0), no termination reason is returned. The reason argument
is a bit mask, and one or more reasons can be returned. Values for reason
include:

I_TERM_MAXCNT bufsize characters read.

I_TERM_END END indicator received on last character.

I_TERM_CHR Termination character enabled and received.
Chapter 11 217

SICL Language Reference
IFREAD
The actualcnt argument is a pointer to an unsigned long integer which, upon
exit, contains the actual number of bytes read from the formatted I/O read
buffer.

If a termination condition occurs, the ifread will terminate. However, if
there is nothing in the formatted I/O read buffer to terminate the read,
ifread will read from the device, fill the buffer again, etc..

This function obeys the itermchr termination character, if any, for the
specified session. The read terminates only on one of the following
conditions:

n It reads bufsize number of bytes.

n It finds a byte with the END indicator attached.

n It finds the current termination character in the read buffer
(set with itermchr).

n An error occurs.

This function acts identically to the iread function, except the data is not
read directly from the device. Instead the data is read from the formatted I/O
read buffer. The advantage to this function over iread is that it can be
intermixed with calls to iscanf, while iread may not.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IPRINTF, ISCANF, IPROMPTF, IFWRITE, ISETBUF, ISETUBUF, IFLUSH,
ITERMCHR
218 Chapter 11

SICL Language Reference
IFWRITE
IFWRITE
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ifwrite (id, buf, datalen, end, actualcnt);
INST id;
char *buf;
unsigned long datalen;
int end;
unsigned long *actualcnt;

Visual Basic Syntax
Function ifwrite
(ByVal id As Integer, ByVal buf As String,
 ByVal datalen As Long, ByVal endi As Integer,
 actual As Long)

Description

This function is used to send a block of data to the device via the formatted
I/O write buffer (the same buffer used by iprintf). The id argument
specifies the session to send the data to when the formatted I/O write buffer
is flushed. The buf argument is a pointer to the data that is to be sent to the
specified interface or device. The datalen argument is an unsigned long
integer containing the length of the data block in bytes.

If the end argument is non-zero, this function will send the END indicator
with the last byte of the data block. Otherwise, if end is set to zero, no
END indicator will be sent.

The actualcnt argument is a pointer to an unsigned long integer. Upon exit,
it will contain the actual number of bytes written to the specified device.
NULL pointer can be passed for this argument, and it will be ignored.

This function acts identically to the iwrite function, except the data is not
written directly to the device. Instead the data is written to the formatted I/O
write buffer (the same buffer used by iprintf). The formatted I/O write
buffer is then flushed to the device at normal times, such as when the buffer
is full, or when iflush is called.
Chapter 11 219

SICL Language Reference
IFWRITE
The advantage to this function over iwrite is that it can be intermixed with
calls to iprintf, while iwrite cannot.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IPRINTF, ISCANF, IPROMPTF, IFREAD, ISETBUF, ISETUBUF, IFLUSH,
ITERMCHR, IWRITE, IREAD
220 Chapter 11

SICL Language Reference
IGETADDR
IGETADDR
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igetaddr (id, addr);
INST id;
char * *addr;

Description

The igetaddr function returns a pointer to the address string which was
passed to the iopen call for the session id. This function is not supported
on Visual Basic.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IOPEN
Chapter 11 221

SICL Language Reference
IGETDATA
IGETDATA
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igetdata (id, data);
INST id;
void * *data;

Description

The igetdata function retrieves the pointer to the data structure stored by
isetdata associated with a session. This function is not supported on Visual
Basic

The isetdata/igetdata functions provide a good method of passing data to
event handlers, such as error, interrupt, or SRQ handlers. For example, you
could set up a data structure in the main procedure and retrieve the same
data structure in a handler routine. You could set a device command string
in this structure so an error handler could re-set the state of the device on
errors.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

ISETDATA
222 Chapter 11

SICL Language Reference
IGETDEVADDR
IGETDEVADDR
Supported sessions: .device

C Syntax
#include <sicl.h>

int igetdevaddr (id, prim, sec);
INST id;
int *prim;
int *sec;

Visual Basic Syntax
Function igetdevaddr
(ByVal id As Integer, prim As Integer,
 sec As Integer)

Description

The igetdevaddr function returns the device address of the device
associated with a given session. This function returns the primary device
address in prim. The sec parameter contains the secondary address of the
device or -1 if no secondary address exists.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IOPEN
Chapter 11 223

SICL Language Reference
IGETERRNO
IGETERRNO
C Syntax

#include <sicl.h>

int igeterrno ();

Visual Basic Syntax
Function igeterrno ()

Description

All functions (except a few listed below) return a zero if no error occurred
(I_ERR_NOERROR), or a non-zero error code if an error occurs (see
Appendix C - SICL Error Codes). This value can be used directly. The
igeterrno function will return the last error that occurred in one of the
library functions.

If an error handler is installed, the library calls the error handler when an
error occurs.The following functions do not return the error code in the return
value. Instead, they indicate whether an error occurred.

For these functions (and any of the other functions), when an error is
indicated, read the error code by using the igeterrno function, or read
the associated error message by using the igeterrstr function.

Return Value

This function returns the error code from the last failed SICL call. If a SICL
function is completed successfully, this function returns undefined results.

On operating systems that support multiple threads, the error number is
per-thread. This means that the error number returned is for the last failed
SICL function for this thread (not necessarily for the session).

See Also

IONERROR, IGETONERROR, IGETERRSTR, ICAUSEERR

iopen,iprintf,isprintf,ivprintf, isvprintf,iscanf,
isscanf,ivscanf,isvscanf,ipromptf,ivpromptf,imap,
i?peek,i?poke
224 Chapter 11

SICL Language Reference
IGETERRSTR
IGETERRSTR
C Syntax

#include <sicl.h>

char *igeterrstr (errorcode);
int errorcode;

Visual Basic Syntax
Function igeterrstr
(ByVal errcode As Integer, myerrstr As String)

Description

SICL has a set of defined error messages that correspond to error codes
(see Appendix C - SICL Error Codes) that can be generated in SICL
functions. To get these error messages from error codes, use the
igeterrstr function.

Return Value

Pass this function the error code you want and this function will return a
human-readable string.

See Also

IONERROR, IGETONERROR, IGETERRNO, ICAUSEERR
Chapter 11 225

SICL Language Reference
IGETGATEWAYTYPE
IGETGATEWAYTYPE
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igetgatewaytype (id, gwtype);
INST id;
int *gwtype;

Visual Basic Syntax
Function igetgatewaytype
(ByVal id As Integer, pdata As Integer) As Integer

Description

The igetgatewaytype function returns in gwtype the gateway type
associated with a given session id. This function returns one of the following
values in gwtype:

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

Chapter 8 - Using SICL with LAN

I_INTF_LAN The session is using a LAN gateway to access the
remote interface.

I_INTF_NONE The session is not using a gateway.
226 Chapter 11

SICL Language Reference
IGETINTFSESS
IGETINTFSESS
Supported sessions: . device, commander

C Syntax
#include <sicl.h>

INST igetintfsess (id);
INST id;

Visual Basic Syntax
Function igetintfsess
(ByVal id As Integer)

Description

The igetintfsess function takes the device session specified by id and
returns a new session id that refers to an interface session associated with
the interface that the device is on.

Most SICL applications will take advantage of the benefits of device
sessions and not want to bother with interface sessions. Since some
functions only work on device sessions and others only work on interface
sessions, occasionally it is necessary to perform functions on an interface
session, when only a device session is available for use. An example is to
perform an interface clear (see iclear) from within an SRQ handler (see
ionsrq).

In addition, multiple calls to igetintfsess with the same id will return the
same interface session each time. This makes this function useful as a filter,
taking a device session in and returning an interface session. SICL will close
the interface session when the device or commander session is closed.
Therefore, do not close this session.

Return Value

If no errors occur, this function returns a valid session id. Otherwise, it
returns zero (0).

See Also

IOPEN
Chapter 11 227

SICL Language Reference
IGETINTFTYPE
IGETINTFTYPE
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igetintftype (id, pdata);
INST id;
int *pdata;

Visual Basic Syntax
Function igetintftype
(ByVal id As Integer, pdata As Integer)

Description

The igetintftype function returns a value indicating the type of interface
associated with a session. This function returns one of the following values
in pdata:

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IOPEN

I_INTF_GPIB This session is associated with a GPIB interface.

I_INTF_GPIO This session is associated with a GPIO interface.

I_INTF_LAN This session is associated with a LAN interface.

I_INTF_RS232 This session is associated with an RS-232 (Serial)
interface.

I_INTF_VXI This session is associated with a VXI interface.
228 Chapter 11

SICL Language Reference
IGETLOCKWAIT
IGETLOCKWAIT
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igetlockwait (id, flag);
INST id;
int *flag;

Visual Basic Syntax
Function igetlockwait
(ByVal id As Integer, flag As Integer)

Description

To get the current status of the lockwait flag, use the igetlockwait
function. This function stores a one (1) in the variable pointed to by flag
if the wait mode is enabled, or a zero (0) if a no-wait, error-producing mode
is enabled.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ILOCK, IUNLOCK, ISETLOCKWAIT
Chapter 11 229

SICL Language Reference
IGETLU
IGETLU
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igetlu (id, lu);
INST id;
int *lu;

Visual Basic Syntax
Function igetlu
(ByVal id As Integer, lu As Integer)

Description

The igetlu function returns in lu the logical unit (interface address) of the
device or interface associated with a given session id.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IOPEN, IGETLUINFO
230 Chapter 11

SICL Language Reference
IGETLUINFO
IGETLUINFO
C Syntax

#include <sicl.h>

int igetluinfo (lu, luinfo);
int lu;
struct lu_info *luinfo;

Visual Basic Syntax
Function igetluinfo
(ByVal lu As Integer, result As lu_info)

Description

The igetluinfo function is used to get information about the interface
associated with the lu (logical unit). For C programs, the lu_info structure
has the following syntax:

struct lu_info {
...
long logical_unit; /* same as value passed into
igetluinfo */
char symname[32]; /* symbolic name assigned to interface
*/
char cardname[32]; /* name of interface card */
long intftype; /* same value returned by igetintftype
*/
...
};

For Visual Basic programs, the lu_info structure has the following syntax:

Type lu_info
logical_unit As Long
symname As String
cardname As String
filler1 As Long
intftype As Long

.

.

.
End Type
Chapter 11 231

SICL Language Reference
IGETLUINFO
In a given implementation, the exact structure and contents of the lu_info
structure is implementation-dependent. The structure can contain any
amount of non-standard, implementation-dependent fields. However, the
structure must always contain the above fields.

If you are programming in C, see the sicl.h file to get the exact lu_info
syntax. If you are programming in Visual Basic, see the SICL.BAS or
SICL4.BAS file for the exact syntax. igetluinfo returns information for
valid local interfaces only, not remote interfaces being accessed via LAN.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IOPEN, IGETLU, IGETLULIST
232 Chapter 11

SICL Language Reference
IGETLULIST
IGETLULIST
C Syntax

#include <sicl.h>

int igetlulist (lulist);
int * *lulist;

Visual Basic Syntax
Function igetlulist
(list() As Integer)

Description

The igetlulist function stores in lulist the logical unit (interface address)
of each valid interface configured for SICL. The last element in the list is set
to -1. This function can be used with igetluinfo to retrieve information
about all local interfaces.

Return Value

For C programs, this function returns zero (0) if successful orsuccessful or a
non-zero error number if an error occurs. For Visual Basic programs, no
error number is returned. Instead, the global Err variable is set if an error
occurs.

See Also

IOPEN, IGETLUINFO, IGETLU
Chapter 11 233

SICL Language Reference
IGETONERROR
IGETONERROR
C Syntax

#include <sicl.h>

int igetonerror (proc);
void (* *proc)(INST, int);

Description

This function is not supported on Visual Basic. The igetonerror function
returns the current error handler setting. This function stores the address of
the currently installed error handler into the variable pointed to by proc. If no
error handler exists, it will store a zero (0).

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IONERROR, IGETERRNO, IGETERRSTR, ICAUSEERR
234 Chapter 11

SICL Language Reference
IGETONINTR
IGETONINTR
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igetonintr (id, proc);
INST id;
void (* *proc)(INST, long, long);

Description

This function is not supported on Visual Basic. The igetonintr function
stores the address of the current interrupt handler in proc. If no interrupt
handler is currently installed, proc is set to zero (0).

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IONINTR, IWAITHDLR, IINTROFF, IINTRON
Chapter 11 235

SICL Language Reference
IGETONSRQ
IGETONSRQ
Supported sessions: . device, interface

C Syntax
#include <sicl.h>

int igetonsrq (id, proc);
INST id;
void (* *proc)(INST);

Description

This function is not supported on Visual Basic.The igetonsrq function
stores the address of the current SRQ handler in proc. If there is no SRQ
handler installed, proc will be set to zero (0).

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IONSRQ, IWAITHDLR, IINTROFF, IINTRON
236 Chapter 11

SICL Language Reference
IGETSESSTYPE
IGETSESSTYPE
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igetsesstype (id, pdata);
INST id;
int *pdata;

Visual Basic Syntax
Function igetsesstype
(ByVal id As Integer, pdata As Integer)

Description

The igetsesstype function returns in pdata a value indicating the type of
session associated with a given session id. This function returns one of the
following values in pdata:

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IOPEN

I_SESS_CMDR The session associated with id is a commander session.

I_SESS_DEV The session associated with id is a device session.

I_SESS_INTF The session associated with id is an interface session.
Chapter 11 237

SICL Language Reference
IGETTERMCHR
IGETTERMCHR
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igettermchr (id, tchr);
INST id;
int *tchr;

Visual Basic Syntax
Function igettermchr
(ByVal id As Integer, tchr As Integer)

Description

This function sets the variable referenced by tchr to the termination
character for the session specified by id. If no termination character is
enabled for the session, the variable referenced by tchr is set to -1.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ITERMCHR
238 Chapter 11

SICL Language Reference
IGETTIMEOUT
IGETTIMEOUT
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int igettimeout (id, tval);
INST id;
long *tval;

Visual Basic Syntax
Function igettimeout
(ByVal id As Integer, tval As Long)

Description

The igettimeout function stores the current timeout value in tval.
If no timeout value has been set, tval will be set to zero (0).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ITIMEOUT
Chapter 11 239

SICL Language Reference
IGPIBATNCTL
IGPIBATNCTL
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibatnctl (id, atnval);
INST id;
int atnval;

Visual Basic Syntax
Function igpibatnctl
(ByVal id As Integer, ByVal atnval As Integer)

Description

The igpibatnctl function controls the state of the ATN (Attention) line.
If atnval is non-zero, ATN is set. If atnval is 0, ATN is cleared.

This function is used primarily to allow GPIB devices to communicate
without the controller participating. For example, after addressing one device
to talk and another to listen, ATN can be cleared with igpibatnctl to
allow the two devices to transfer data.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBSENDCMD, IGPIBRENCTL, IWRITE

NOTE

This function will not work with iwrite to send GPIB command data
onto the bus. The iwrite function on a GPIB interface session always
clears the ATN line before sending the buffer. To send GPIB command
data, use the igpibsendcmd function.
240 Chapter 11

SICL Language Reference
IGPIBBUSADDR
IGPIBBUSADDR
Supported sessions: . interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibbusaddr (id, busaddr);
INST id;
int busaddr;

Visual Basic Syntax
Function igpibbusaddr
(ByVal id As Integer, ByVal busaddr As Integer)

Description

This function changes the interface bus address to busaddr for the
GPIB interface associated with the session id.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBBUSSTATUS
Chapter 11 241

SICL Language Reference
IGPIBBUSSTATUS
IGPIBBUSSTATUS
Supported sessions: .interface

C Syntax
#include <sicl.h>

int igpibbusstatus (id, request, result);
INST id;
int request;
int *result;

Visual Basic Syntax
Function igpibbusstatus
(ByVal id As Integer, ByVal request As Integer,
 result As Integer)

Description

The igpibbusstatus function returns the status of the GPIB interface.
This function takes one of the following parameters in the request parameter
and returns the status in the result parameter.

I_GPIB_BUS_REM Returns a 1 if the interface is in remote mode,
0 otherwise.

I_GPIB_BUS_SRQ Returns a 1 if the SRQ line is asserted,
0 otherwise.

I_GPIB_BUS_NDAC Returns a 1 if the NDAC line is asserted,
0 otherwise.

I_GPIB_BUS_SYSCTLR Returns a 1 if the interface is the system
controller, 0 otherwise.

I_GPIB_BUS_ACTCTLR Returns a 1 if the interface is the active
controller, 0 otherwise.

I_GPIB_BUS_TALKER Returns a 1 if the interface is addressed to talk,
0 otherwise.

I_GPIB_BUS_LISTENER Returns a 1 if the interface is addressed to
listen, 0 otherwise.
242 Chapter 11

SICL Language Reference
IGPIBBUSSTATUS
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBPASSCTL, IGPIBSENDCMD

I_GPIB_BUS_ADDR Returns the bus address (0-30) of this interface
on the GPIB bus.

I_GPIB_BUS_LINES Returns the state of various GPIB lines. The result
is a bit mask with the following bits being
significant (bit 0 is the least-significant-bit):

Bit 0: 1 if SRQ line is asserted.
Bit 1: 1 if NDAC line is asserted.
Bit 2: 1 if ATN line is asserted.
Bit 3: 1 if DAV line is asserted.
Bit 4: 1 if NRFD line is asserted.
Bit 5: 1 if EOI line is asserted.
Bit 6: 1 if IFC line is asserted.
Bit 7: 1 if REN line is asserted.
Bit 8: 1 if in REMote state.
Bit 9: 1 if in LLO (local lockout) mode.
Bit 10: 1 if currently the active controller.
Bit 11: 1 if addressed to talk.
Bit 12: 1 if addressed to listen.
Chapter 11 243

SICL Language Reference
IGPIBGETT1DELAY
IGPIBGETT1DELAY
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibgett1delay (id, delay);
INST id;
int *delay;

Visual Basic Syntax
Function igpibgett1delay
(ByVal id As Integer, delay As Integer)

Description

This function retrieves the current setting of t1 delay on the GPIB interface
associated with session id. The value returned is the time of t1 delay in
nanoseconds.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBSETT1DELAY
244 Chapter 11

SICL Language Reference
IGPIBLLO
IGPIBLLO
Supported sessions: . interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibllo (id);
INST id;

Visual Basic Syntax
Function igpibllo
(ByVal id As Integer)

Description

The igpibllo function puts all GPIB devices on the given bus in local
lockout mode. The id specifies a GPIB interface session. This function sends
the GPIB LLO command to all devices connected to the specified GPIB
interface. Local Lockout prevents you from returning to local mode by
pressing a device’s front panel keys.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IREMOTE, ILOCAL
Chapter 11 245

SICL Language Reference
IGPIBPASSCTL
IGPIBPASSCTL
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibpassctl (id, busaddr);
INST id;
int busaddr;

Visual Basic Syntax
Function igpibpassctl
(ByVal id As Integer, ByVal busaddr As Integer)

Description

The igpibpassctl function passes control from this GPIB interface to
another GPIB device specified in busaddr. The busaddr parameter must be
between 0 and 30. This will also cause an I_INTR_INTFDEACT interrupt,
if enabled.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IONINTR, ISETINTR
246 Chapter 11

SICL Language Reference
IGPIBPPOLL
IGPIBPPOLL
Supported sessions: . interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibppoll (id, result);
INST id;
unsigned int *result;

Visual Basic Syntax
Function igpibppoll
(ByVal id As Integer, result As Integer)

Description

The igpibppoll function performs a parallel poll on the bus and returns
the (8-bit) result in the lower byte of result.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBPPOLLCONFIG, IGPIBPPOLLRESP
Chapter 11 247

SICL Language Reference
IGPIBPPOLLCONFIG
IGPIBPPOLLCONFIG
Supported sessions: .device, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibppollconfig (id, cval);
INST id;
unsigned int cval;

Visual Basic Syntax
Function igpibppollconfig
(ByVal id As Integer, ByVal cval As Integer)

Description

For device sessions, the igpibppollconfig function enables or disables
the parallel poll responses. If cval is greater than or equal to 0, the device
specified by id is enabled in generating parallel poll responses. In this case,
the lower 4 bits of cval correspond to:

If cval is equal to -1, the device specified by id is disabled from generating
parallel poll responses. For commander sessions, the igpibppollconfig
function enables and disables parallel poll responses for this device (that is,
how the devices responds when the controller PPOLLs).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBPPOLL, IGPIBPPOLLRESP

bit 3 Set the sense of the PPOLL response. A 1 in this bit means that
an affirmative response means service request. A 0 in this bit
indicates an affirmative response means no service request.

bit 2-0 A value from 0-7 specifying GPIB line to respond on for PPOLLs.
248 Chapter 11

SICL Language Reference
IGPIBPPOLLRESP
IGPIBPPOLLRESP
Supported sessions: . commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibppollresp (id, sval);
INST id;
int sval;

Visual Basic Syntax
Function igpibppollresp
(ByVal id As Integer, ByVal sval As Integer)

Description

The igpibppollresp function sets the state of the PPOLL bit (the state
of the PPOLL bit when the controller PPOLLs).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBPPOLL, IGPIBPPOLLCONFIG
Chapter 11 249

SICL Language Reference
IGPIBRENCTL
IGPIBRENCTL
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibrenctl (id, ren);
INST id;
int ren;

Visual Basic Syntax
Function igpibrenctl
(ByVal id As Integer, ByVal ren As Integer)

Description

The igpibrenctl function controls the state of the REN (Remote Enable)
line. If ren is non-zero, REN is set. If ren is 0, REN is cleared.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBATNCTL
250 Chapter 11

SICL Language Reference
IGPIBSENDCMD
IGPIBSENDCMD
Supported sessions: . interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibsendcmd (id, buf, length);
INST id;
char *buf;
int length;

Visual Basic Syntax
Function igpibsendcmd
(ByVal id As Integer, ByVal buf As String,
 ByVal length As Integer)

Description

The igpibsendcmd function sets the ATN line and then sends bytes to the
GPIB interface. This function sends length number of bytes from buf to the
GPIB interface. The igpibsendcmd function leaves the ATN line set. If the
interface is not active controller, this function will return an error.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBATNCTL, IWRITE
Chapter 11 251

SICL Language Reference
IGPIBSETT1DELAY
IGPIBSETT1DELAY
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpibsett1delay (id, delay);
INST id;
int delay;

Visual Basic Syntax
Function igpibsett1delay
(ByVal id As Integer, ByVal delay As Integer)

Description

This function sets the t1 delay on the GPIB interface associated with session
id. The value is the time of t1 delay in nanoseconds, and should be no less
than I_GPIB_T1DELAY_MIN or no greater than I_GPIB_T1DELAY_MAX.

Most GPIB interfaces only support a small number of t1 delays, so the
actual value used by the interface could be different than that specified in
the igpibsett1delay function. You can determine the actual value used
by calling the igpibgett1delay function.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIBGETT1DELAY
252 Chapter 11

SICL Language Reference
IGPIOCTRL
IGPIOCTRL
Supported sessions: . interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpioctrl (id, request, setting);
INST id;
int request;
unsigned long setting;

Visual Basic Syntax
Function igpioctrl
(ByVal id As Integer, ByVal request As Integer,
 ByVal setting As Long)

Description

GPIO is not supported over LAN. The igpioctrl function is used to control
various lines and modes of the GPIO interface. This function takes request
and sets the interface to the specified setting. The request parameter can be
one of the following:

I_GPIO_AUTO_HDSK If the setting parameter is non-zero, the interface uses
auto-handshake mode (the default). This gives the
best performance for iread and iwrite operations.

If the setting parameter is zero (0), auto-handshake
mode is canceled. This is required for programs
that implement their own handshake using
I_GPIO_SET_PCTL.
Chapter 11 253

SICL Language Reference
IGPIOCTRL
I_GPIO_AUX The setting parameter is a mask containing the state
of all auxiliary control lines. A 1 bit asserts the
corresponding line. A 0 (zero) bit clears the
corresponding line.

When configured in Enhanced Mode, the E2075
interface has 16 auxiliary control lines. In 98622
Compatibility Mode, it has none. Attempting to use
I_GPIO_AUX in 98622 Compatibility Mode results in
the error: Operation not supported.

I_GPIO_CHK_PSTS If the setting parameter is non-zero, the PSTS line is
checked before each block of data is transferred. If
the setting parameter is zero (0), the PSTS line is
ignored during data transfers. If the PSTS line is
checked and false, SICL reports the error: Device
not active or available.

I_GPIO_CTRL The setting parameter is a mask containing the state
of all control lines. A 1 bit asserts the corresponding
line. A 0 (zero) bit clears the corresponding line.

The E2075 interface has two control lines, so only the
two least-significant bits have meaning for that
interface. These can be represented by the following.
All other bits in the setting mask are ignored.
I_GPIO_CTRL_CTL0The CTL0 line.
I_GPIO_CTRL_CTL1The CTL1 line.

I_GPIO_DATA The setting parameter is a mask containing the state
of all data out lines. A 1 bit asserts the corresponding
line; a 0 (zero) bit clears the corresponding line. The
E2075 interface has 8 or 16 data out lines, depending
on the setting specified by igpiosetwidth. This
function changes data lines asynchronously, without
any type of handshake. It is intended for programs
that implement their own handshake explicitly.

I_GPIO_READ_EOI If the setting parameter is I_GPIO_EOI_NONE, END
pattern matching is disabled for read operations.
Any other setting enables END pattern matching with
the specified value. If the current data width is 16 bits,
the lower 16 bits of setting are used. If the current
data width is 8 bits, only the lower 8 bits of setting are
used.
254 Chapter 11

SICL Language Reference
IGPIOCTRL
I_GPIO_SET_PCTL If the setting parameter is non-zero, a GPIO
handshake is initiated by setting the PCTL line. Auto-
handshake mode must be disabled to allow explicit
control of the PCTL line. Attempting to use
I_GPIO_SET_PCTL in auto-handshake mode results
in the error: Operation not supported.

I_GPIO_PCTL_DELAY The setting parameter selects a PCTL delay value
from a set of eight “click stops” numbered 0 through 7.
A setting of 0 selects 200 ns. A setting of 7 selects
50 µs. For a complete list of delay values, see the
E2075 GPIO Interface Card Installation Guide.

Changes made by this function can remain in the
interface hardware after your program ends. On
HP-UX and Windows NT/Windows 2000, the setting
remains until the computer is rebooted. On Windows
95/Windows 98, it remains until hp074i16.dll is
reloaded.

I_GPIO_POLARITY The setting parameter determines the logical polarity of
various interface lines according to the following bit
map. A 0 sets active-low polarity. A 1 sets active-high
polarity.

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Data Out Data In PSTS PFLG PCTL

Value = 16 Value = 8 Value = 4 Value = 2 Value = 1

Changes made by this function can remain in the
interface hardware after your program ends. On HP-
UX and Windows NT/Windows 2000, the setting
remains until the computer is rebooted. On Windows
95/Windows 98, it remains until hp074i16.dll is
reloaded.
Chapter 11 255

SICL Language Reference
IGPIOCTRL
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIOSTAT, IGPIOSETWIDTH

I_GPIO_READ_CLK The setting parameter determines when the data
input registers are latched. It is recommended that
you represent setting as a hex number. In that
representation, the first hex digit corresponds to the
upper (most-significant) input byte, and the second
hex digit corresponds to the lower input byte. The
clocking choices are: 0 = Read, 1 = Busy, 2 = Ready.
For an explanation of the data-in clocking, see the
E2075 GPIO Interface Card Installation Guide.

Changes made by this function can remain in the
interface hardware after your program ends. On
HP-UX and Windows NT/Windows 2000, the setting
remains until the computer is rebooted. On Windows
95/Windows 98, it remains until hp074i16.dll is
reloaded.
256 Chapter 11

SICL Language Reference
IGPIOGETWIDTH
IGPIOGETWIDTH
Supported sessions: . interface

C Syntax
#include <sicl.h>

int igpiogetwidth (id, width);
INST id;
int *width;

Visual Basic Syntax
Function igpiogetwidth
(ByVal id As Integer, width As Integer)

Description

GPIO is not supported over LAN. The igpiogetwidth function returns
the current data width (in bits) of a GPIO interface. For the E2075 interface,
width will be either 8 or 16.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIOSETWIDTH
Chapter 11 257

SICL Language Reference
IGPIOSETWIDTH
IGPIOSETWIDTH
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int igpiosetwidth (id, width);
INST id;
int width;

Visual Basic Syntax
Function igpiosetwidth
(ByVal id As Integer, ByVal width As Integer)

Description

GPIO is not supported over LAN. The igpiosetwidth function is used to
set the data width (in bits) of a GPIO interface. For the E2075 interface, the
acceptable values for width are 8 and 16. While in 16-bit width mode, all
iread calls will return an even number of bytes, and all iwrite calls must
send an even number of bytes.

16-bit words are placed on the data lines using “big-endian” byte order (most
significant bit appears on data line D_15). Data alignment is automatically
adjusted for the native byte order of the computer. This is a programming
concern only if your program does its own packing of bytes into words.
This program segment is an iwrite example. An analogous situation
exists for iread.

/* System automatically handles byte order */
unsigned short words[5];

/* Programmer assumes responsibility for byte order */
unsigned char bytes[10];

/* Using the GPIO interface in 16-bit mode */
igpiosetwidth(id, 16);
/* This call is platform-independent */
iwrite(id, words, 10, ...);
258 Chapter 11

SICL Language Reference
IGPIOSETWIDTH
/* This call is NOT platform-independent */
iwrite(id, bytes, 10, ...);

/* This sequence is platform-independent */
ibeswap(bytes, 10, 2);
iwrite(id, bytes, 10, ...);

There are several details about GPIO width. The “count” parameters for
iread and iwrite always specify bytes, even when the interface has a
16-bit width. For example, to send 100 words, specify 200 bytes. The
itermchr function always specifies an 8-bit character. If a 16-bit width is
set, only the lower 8 bits are used when checking for an itermchr match.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIOGETWIDTH
Chapter 11 259

SICL Language Reference
IGPIOSTAT
IGPIOSTAT
Supported sessions: .interface

C Syntax
#include <sicl.h>

int igpiostat (id, request, result);
INST id;
int request;
unsigned long *result;

Visual Basic Syntax
Function igpiostat
(ByVal id As Integer, ByVal request As Integer,
 ByVal result As Long)

Description

GPIO is not supported over LAN. The igpiostat function is used to
determine the current state of various GPIO modes and lines. The request
parameter can be one of the following:

I_GPIO_CTRL The result is a mask representing the state of all
control lines. The E2075 interface has two control
lines, so only the two least-significant bits have
meaning for that interface. These can be represented
by the following. All other bits in the result mask are 0
(zero).
I_GPIO_CTRL_CTL0The CTL0 line.
I_GPIO_CTRL_CTL1The CTL1 line.
260 Chapter 11

SICL Language Reference
IGPIOSTAT
I_GPIO_DATA The result is a mask representing the state of all
data input latches. The E2075 interface has either
8 or 16 data in lines, depending on the setting
specified by igpiosetwidth.

This function reads the data lines asynchronously,
without any type of handshake. It is intended for
programs that implement their own handshake
explicitly.

An igpiostat function from one process will
proceed even if another process has a lock on the
interface. Ordinarily, this does not alter or disrupt any
hardware states. Reading the data in lines is one
exception.

A data read causes an “input” indication on the I/O
line (pin 20). In rare cases, that change might be
unexpected, or undesirable, to the session that owns
the lock.

I_GPIO_INFO The result is a mask representing the following
information about the device and the E2075 interface:

I_GPIO_PSTS State of the PSTS line.

I_GPIO_EIR State of the EIR line.

I_GPIO_READY True if ready for a handshake. (Exact meaning
depends on the current handshake mode.)

I_GPIO_AUTO_HDSK True if auto-handshake mode is enabled. False if
auto-handshake mode is disabled.

I_GPIO_CHK_PSTS True if the PSTS line is to be checked before each
block of data is transferred. False if PSTS is to be
ignored during data transfers.

I_GPIO_ENH_MODE True if the E2075 data ports are configured in
Enhanced (bi-directional) Mode. False if the ports
are configured in 98622 Compatibility Mode.

I_GPIO_READ_EOI The result is the value of the current END pattern
being used for read operations. If the result is
I_GPIO_EOI_NONE, no END pattern matching is
being used. Any other result is the value of the
END pattern.
Chapter 11 261

SICL Language Reference
IGPIOSTAT
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGPIOCTRL, IGPIOSETWIDTH

I_GPIO_STAT The result is a mask representing the state of all
status lines. The E2075 interface has two status lines,
so only the two least-significant bits have meaning for
that interface. These can be represented by the
following. All other bits in the result mask are 0 (zero).
I_GPIO_STAT_STI0The STI0 line.
I_GPIO_STAT_STI1The STI1 line.
262 Chapter 11

SICL Language Reference
IHINT
IHINT
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int ihint (id, hint);
INST id;
int hint;

Visual Basic Syntax
Function ihint
(ByVal id As Integer, ByVal hint As Integer)

Description

There are three common ways a driver can implement I/O communications:
Direct Memory Access (DMA), Polling (POLL), and Interrupt Driven (INTR).
However, some systems may not implement all of these transfer methods.
The SICL software permits you to “recommend” your preferred method of
communication. To do this, use the ihint function. The hint argument can
be one of the following values:

I_HINT_DONTCARE No preference.

I_HINT_USEDMA Use DMA if possible and feasible. Otherwise use
POLL.

I_HINT_USEPOLL Use POLL if possible and feasible. Otherwise use
DMA or INTR.

I_HINT_USEINTR Use INTR if possible and feasible. Otherwise use
DMA or POLL.

I_HINT_SYSTEM The driver should use whatever mechanism is best
suited for improving overall system performance.

I_HINT_IO The driver should use whatever mechanism is best
suited for improving I/O performance.
Chapter 11 263

SICL Language Reference
IHINT
Some driver suggestions are:

n DMA tends to be very fast at sending data but requires more time to
set up a transfer. It is best for sending large amounts of data in a
single request. Not all architectures and interfaces support DMA.

n Polling tends to be fast at sending data and has a small set up time.
However, if the interface only accepts data at a slow rate, polling
wastes a lot of CPU time. Polling is best for sending smaller
amounts of data to fast interfaces.

n Interrupt driven transfers tend to be slower than polling. It also has a
small set up time. The advantage to interrupts is that the CPU can
perform other functions while waiting for data transfers to complete.
This mechanism is best for sending small to medium amounts of
data to slow interfaces or interfaces with an inconsistent speed.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IREAD, IWRITE, IFREAD, IFWRITE, IPRINTF, ISCANF

NOTE

The parameter passed in ihint is only a suggestion to the driver
software. The driver will still make its own determination of which
technique it will use. The choice has no effect on the operation of any
intrinsics, just on the performance characteristics of that operation.
264 Chapter 11

SICL Language Reference
IINTROFF
IINTROFF
C Syntax

#include <sicl.h>

int iintroff ();

Description

This function is not supported on Visual Basic. The iintroff function
disables SICL’s asynchronous events for a process. This means that all
installed handlers for any sessions in a process will be held off until the
process enables them with iintron.

By default, asynchronous events are enabled. However, the library will not
generate any events until the appropriate handlers are installed. To install
handlers, refer to the ionsrq and ionintr functions. The iintroff/
iintron functions do not affect the isetintr values or the handlers in any
way. The default is on.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IONINTR, IGETONINTR, IONSRQ, IGETONSRQ, IWAITHDLR, IINTRON
Chapter 11 265

SICL Language Reference
IINTRON
IINTRON
C Syntax

#include <sicl.h>

int iintron ();

Description

This function is not supported on Visual Basic. The iintron function
enables all asynchronous handlers for all sessions in the process. The
iintroff/iintron functions do not affect the isetintr values or the
handlers in any way. The default is on.

Calls to iintroff/iintron can be nested, meaning that there must be an
equal number of ons and offs. This means that calling the iintron function
may not actually enable interrupts again. For example, note how the
following code enables and disables events.

iintroff(); /* Events Disabled */
iintron(); /* Events Enabled */

iintroff(); /* Events Disabled */
iintroff(); /* Events Disabled */
iintron(); /* Events STILL Disabled */

iintron(); /* Events NOW Enabled */

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IONINTR, IGETONINTR, IONSRQ, IGETONSRQ, IWAITHDLR, IINTROFF,
ISETINTR
266 Chapter 11

SICL Language Reference
ILANGETTIMEOUT
ILANGETTIMEOUT
Supported sessions: . interface

C Syntax
#include <sicl.h>

int ilangettimeout (id, tval);
INST id;
long *tval;

Visual Basic Syntax
Function ilangettimeout
(ByVal id As Integer, tval As Long) As Integer

Description

The ilangettimeout function stores the current LAN timeout value in
tval. If the LAN timeout value has not been set via ilantimeout, tval will
contain the LAN timeout value calculated by the system.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ILANTIMEOUT and Chapter 8 - Using SICL with LAN.
Chapter 11 267

SICL Language Reference
ILANTIMEOUT
ILANTIMEOUT
Supported sessions: .interface

C Syntax
#include <sicl.h>

int ilantimeout (id, tval);
INST id;
long tval;

Visual Basic Syntax
Function ilantimeout
(ByVal id As Integer, ByVal tval As Long) As Integer

Description

The ilantimeout function sets the length of time that the application
(LAN client) will wait for a response from the LAN server. Once an
application has manually set the LAN timeout via this function, the software
will no longer attempt to determine the LAN timeout that should be used.
Instead, the software will use the value set via this function.

In this function, tval defines the timeout in milliseconds. A value of zero (0)
disables timeouts. The value 1 has special significance, causing the LAN
client to not wait for a response from the LAN server. However, the value 1
should be used in special circumstances only and should be used with
extreme caution. See “Using the No-Wait Value” for more information.

This function does not affect the SICL timeout value set via the itimeout
function. The LAN server will attempt the I/O operation for the amount of
time specified via itimeout before returning a response.

If the SICL timeout used by the server is greater than the LAN timeout used
by the client, the client may timeout prior to the server, while the server
continues to service the request. This use of the two timeout values is not
recommended, since under this situation the server may send an unwanted
response to the client.
268 Chapter 11

SICL Language Reference
ILANTIMEOUT
8VLQJ�WKH�1R�:DLW�
9DOXH

A tval value of 1 has special significance to ilantimeout, causing the
LAN client to not wait for a response from the LAN server. For a very limited
number of cases, it may make sense to use this no-wait value.

One such scenario is when the performance of paired writes and reads over
a wide-area network (WAN) with long latency times is critical, and losing
status information from the write can be tolerated. Having the write (and only
the write) call not wait for a response allows the read call to proceed
immediately, potentially cutting the time required to perform the paired
WAN write/read in half.

If the no-wait value is used in a multi-threaded application and multiple
threads are attempting I/O over the LAN, I/O operations using the no-wait
option will wait for access to the LAN for 2 minutes. If another thread is
using the LAN interface for greater than 2 minutes, the no-wait operation will
timeout.

NOTE

The ilantimeout function is per process. When ilantimeout is
called, all sessions going out over the network are affected.

Not all computer systems can guarantee an accuracy of one millisecond
on timeouts. Some computer clock systems only provide a resolution of
1/50th or 1/60th of a second. Other computers have a resolution of only
1 second. The time value is always rounded up to the next unit of
resolution.

CAUTION

This value should be used with great caution. If ilantimeout is set
to 1 and then is not reset for a subsequent call, the system may deadlock
due to responses being buffered which are never read, filling the buffers
on both the LAN client and server.
Chapter 11 269

SICL Language Reference
ILANTIMEOUT
To use the no-wait value:

1. Prior to the iwrite call (or any formatted I/O call that will write
data) that you do not want to block waiting for the returned status
from the server, call ilantimeout with a timeout value of 1.

2. Make the iwrite call. The iwrite call will return as soon as the
message is sent, not waiting for a reply. The iwrite call’s return
value will be I_ERR_TIMEOUT, and the reported count will be 0
(even though the data will be written, assuming no errors).

3. The server will send a reply to the write, even though the client
will discard it. There is no way to directly determine the success or
failure of the write, although a subsequent, functioning read call
can be a good sign.

4. Reset the client side timeout to a reasonable value for your
network by calling ilantimeout again with a value sufficiently
large enough to allow a read reply to be received. It is
recommended you use a value that provides some margin for
error. The timeout specified to ilantimeout is in milliseconds
(rounded up to the nearest second).

5. Make the blocking iread call (or formatted I/O call that will read
data). Since ilantimeout has been set to a value other than 1
(preferably not 0), the iread call will wait for a response from the
server for the specified time (rounded up to the nearest second).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ILANGETTIMEOUT and Chapter 8 - Using SICL with LAN.
270 Chapter 11

SICL Language Reference
ILOCAL
ILOCAL
Supported sessions: .device
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ilocal (id);
INST id;

Visual Basic Syntax
Function ilocal
(ByVal id As Integer)

Description

Use the ilocal function to put a device into Local Mode. Placing a device
in Local Mode enables the device’s front panel interface.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IREMOTE and the interface-specific chapter of this manual for details of
implementation.
Chapter 11 271

SICL Language Reference
ILOCK
ILOCK
Supported sessions: device, interface, commander
Affected by functions: . itimeout

C Syntax
#include <sicl.h>

int ilock (id);
INST id;

Visual Basic Syntax
Function ilock
(ByVal id As Integer)

Description

To lock a session, ensuring exclusive use of a resource, use the ilock
function. The id parameter refers to a device, interface, or commander
session. If id refers to an interface, the entire interface is locked and other
interfaces are not affected by this session.

If the id refers to a device or commander, only that device or commander is
locked and only that session may access that device or commander.
However, other devices on that interface or on other interfaces may be
accessed as usual.

Locks are implemented on a per-session basis. If a session within a given
process locks a device or interface, that device or interface is only
accessible from that session. It is not accessible from any other session
in this process, or in any other process.

Attempting to call a SICL function that obeys locks on a device or interface
that is locked will cause the call either to “hang” until the device or interface
is unlocked, to timeout or to return with the error I_ERR_LOCKED (see
isetlockwait).

NOTE

Locks are not supported for LAN interface sessions, such as those
opened with:

lan_intf = iopen(“lan”);
272 Chapter 11

SICL Language Reference
ILOCK
n Locking an interface (from an interface session) restricts other
device and interface sessions from accessing this interface.

n Locking a device restricts other device sessions from accessing this
device. However, other interface sessions may continue to use this
interface.

n Locking a commander (from a commander session) restricts other
commander sessions from accessing this controller. However,
interface sessions may continue to use this interface.

This C example will cause the device session to “hang”.

intf = iopen (“hpib”);
dev = iopen (“hpib,7”);

.

.

.
ilock (intf);
ilock (dev); /* this will succeed */
iwrite (dev, “*CLS”, 4, 1, 0); /* this will hang */

This Visual Basic example will cause the device session to “hang”.

intf = iopen(“hpib”)
dev = iopen(“hpib,7”)

.

.

.
call ilock (intf)
call ilock(dev) ‘ this will succeed
call iwrite(dev, “*CLS”, 4, 1, 0&) ‘ this will hang

NOTE

Locking an interface does lock out all device session accesses on that
interface, such as iwrite (dev2,...), as well as all other SICL
interface session accesses on that interface. Locks can be nested.
So, every ilock requires a matching iunlock.

If iclose is called (either implicitly by exiting the process, or explicitly)
for a session that currently has a lock, the lock will be released.
Chapter 11 273

SICL Language Reference
ILOCK
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IUNLOCK, ISETLOCKWAIT, IGETLOCKWAIT
274 Chapter 11

SICL Language Reference
IMAP
IMAP
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

char *imap (id, map_space, pagestart, pagecnt, suggested);
INST id;
int map_space;
unsigned int pagestart;
unsigned int pagecnt;
char *suggested;

Visual Basic Syntax
Function imap
(ByVal id As Integer, ByVal mapspace As Integer,
 ByVal pagestart As Integer, ByVal pagecnt As Integer,
 ByVal suggested As Long) As Long

Description

The imap function maps a memory space into the process space. The SICL
i?peek and i?poke functions can then be used to read and write to VXI
address space.

The id argument specifies a VXI interface or device. The pagestart argument
indicates the page number within the given memory space where the
memory mapping starts. The pagecnt argument indicates how many pages
to use. For Visual Basic, you must specify 1 for the pagecnt argument.

NOTE

This function is not recommended for new program development.
Use IMAPX instead. This function is not supported over LAN.
Chapter 11 275

SICL Language Reference
IMAP
The map_space argument contains one of the following values:

The suggested argument, if non-NULL, contains a suggested address to
begin mapping memory. However, the function may not always use this
suggested address. For Visual Basic, you must pass a 0 (zero) for this
argument.

I_MAP_A16 Map in VXI A16 address space (64 Kbyte pages).

I_MAP_A24 Map in VXI A24 address space (64 Kbyte pages).

I_MAP_A32 Map in VXI A32 address space (64 Kbyte pages).

I_MAP_VXIDEV Map in VXI device registers. (Device session only, 64
bytes.)

I_MAP_EXTEND Map in VXI Device Extended Memory address space in
A24 or A32 address space. See individual device manuals
for details regarding extended memory address space.
(Device session only.)

I_MAP_SHARED Map in VXI A24/A32 memory that is physically located on
this device (sometimes called local shared memory). If the
hardware supports it (that is, the local shared VXI memory
is dual-ported), this map should be through the local
system bus and not through the VXI memory.

This mapping mechanism provides an alternate way of
accessing local VXI memory without having to go through
the normal VXI memory system. The value of pagestart is
the offset (in 64 Kbyte pages) into the shared memory. The
value of pagecnt is the amount of memory (in 64 Kbyte
pages) to map.

NOTE

The E1489 MXIbus Controller Interface can generate 32-bit data reads
and writes to VXIbus devices with D32 capability. To use 32-bit transfers
with the E1489, use I_MAP_A16_D32, I_MAP_A24_D32, and
I_MAP_A32_D32 in place of I_MAP_A16, I_MAP_A24, and
I_MAP_A32 when mapping to D32 devices.
276 Chapter 11

SICL Language Reference
IMAP
After memory is mapped, it may be accessed directly. Since this function
returns a C pointer, you can also use C pointer arithmetic to manipulate the
pointer and access memory directly. Accidentally accessing non-existent
memory will cause bus errors.

Due to hardware constraints on a given device or interface, not all address
spaces may be implemented. In addition, there may be a maximum number
of pages that can be simultaneously mapped. If a request is made that
cannot be granted due to hardware constraints, the process will hang until
the desired resources become available. To avoid this, use the
isetlockwait command with the flag parameter set to 0, and thus
generate an error instead of waiting for the resources to become available.

You can also use the imapinfo function to determine hardware constraints
before making an imap call. Remember to iunmap a memory space when
you no longer need it. The resources may be needed by another process.

See the Agilent SICL User’s Guide for HP-UX for an example of trapping
bus errors. Or, see your operating system’s programming information for
help in trapping bus errors. You may find this information under the
command signal in your operating system’s manuals. Visual Basic
programs can perform pointer arithmetic within a single page.

Return Value

For C programs, this function returns a zero (0) if an error occurs or a non-
zero number if successful. This non-zero number is the address to begin
mapping memory. For Visual Basic programs, no error number is returned.
Instead, the global Err variable is set if an error occurs.

See Also

IUNMAP, IMAPINFO
Chapter 11 277

SICL Language Reference
IMAPX
IMAPX
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

unsigned long imapx (id, mapspace, pagestart, pagecnt);
INST id;
int mapspace;
unsigned int pagestart;
unsigned int pagecnt;

Visual Basic Syntax
Function imapx
ByVal id As Integer, ByVal mapspace As Integer,
ByVal pagestart As Integer, ByVal pagecnt As Integer)

Description

This function is not supported over LAN. The imapx function returns an
unsigned long number, used in other functions, that maps a memory space
into the process space. The SICL ipeek?x and ipoke?x functions can
then be used to read and write to VXI address space.

The id argument specifies a VXI interface or device. The pagestart argument
indicates the page number within the given memory space where the
memory mapping starts. The pagecnt argument indicates how many pages
to use. For Visual Basic, you must specify 1 for the pagecnt argument.
The map_space argument contains one of the following values:

I_MAP_A16 Map in VXI A16 address space (64 Kbyte pages).

I_MAP_A24 Map in VXI A24 address space (64 Kbyte pages).

I_MAP_A32 Map in VXI A32 address space (64 Kbyte pages).

I_MAP_VXIDEV Map in VXI device registers. (Device session only, 64
bytes.)
278 Chapter 11

SICL Language Reference
IMAPX
Depending on what iderefptr returns, memory may be accessed directly.
Since this function returns a C pointer, you can also use C pointer arithmetic
to manipulate the pointer and access memory directly. Accidentally
accessing non-existent memory will cause bus errors.

Due to hardware constraints on a given device or interface, not all address
spaces may be implemented. In addition, there may be a maximum number
of pages that can be simultaneously mapped. If a request is made that
cannot be granted due to hardware constraints, the process will hang until
the desired resources become available.

To avoid this, use the isetlockwait command with the flag parameter
set to 0, and thus generate an error instead of waiting for the resources to
become available. You may also use the imapinfo function to determine
hardware constraints before making an imap call.

I_MAP_EXTEND Map in VXI Device Extended Memory address space in
A24 or A32 address space. See individual device manuals
for details regarding extended memory address space.
(Device session only.)

I_MAP_SHARED Map in VXI A24/A32 memory that is physically located on
this device (sometimes called local shared memory). If the
hardware supports it (that is, the local shared VXI memory
is dual-ported), this map should be through the local
system bus and not through the VXI memory.

This mapping mechanism provides an alternate way of
accessing local VXI memory without having to go through
the normal VXI memory system. The value of pagestart is
the offset (in 64 Kbyte pages) into the shared memory. The
value of pagecnt is the amount of memory (in 64 Kbyte
pages) to map.

NOTE

The E1489 MXIbus Controller Interface can generate 32-bit data reads
and writes to VXIbus devices with D32 capability. To use 32-bit transfers
with the E1489, use I_MAP_A16_D32, I_MAP_A24_D32, and
I_MAP_A32_D32 in place of I_MAP_A16, I_MAP_A24, and
I_MAP_A32 when mapping to D32 devices.
Chapter 11 279

SICL Language Reference
IMAPX
Remember to iunmapx a memory space when you no longer need it. The
resources may be needed by another process.

See the Agilent SICL User’s Guide for HP-UX for an example of trapping bus
errors. Or, see your operating system’s programming information for help in
trapping bus errors. You can find this information under the command
signal in your operating system’s manuals. Visual Basic programs can
perform pointer arithmetic within a single page.

Return Value

For C programs, this function returns a zero (0) if an error occurs or a non-
zero number if successful. This non-zero number is either a handle or the
address to begin mapping memory. Use the iderefptr function to
determine whether the returned handle is a valid address or a handle.

For Visual Basic programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also

IUNMAPX, IMAPINFO, IDEREFPTR
280 Chapter 11

SICL Language Reference
IMAPINFO
IMAPINFO
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int imapinfo (id, map_space, numwindows, winsize);
INST id;
int map_space;
int *numwindows;
int *winsize;

Visual Basic Syntax
Function imapinfo
(ByVal id As Integer, ByVal mapspace As Integer,
 numwindows As Integer, winsize As Integer)

Description

This function is not supported over LAN. To determine hardware constraints
on memory mappings imposed by a particular interface, use the imapinfo
function. The id argument specifies a VXI interface. The numwindows
argument is filled in with the total number of windows available in the
address space. The winsize argument is filled in with the size of the
windows in pages. The map_space argument specifies the address space.
Valid values for map_space are:

Hardware design constraints may prevent some devices or interfaces from
implementing all of the various address spaces. Also, there may be a limit
to the number of pages that can simultaneously be mapped for usage. In
addition, some resources may already be in use and locked by another
process.

I_MAP_A16 VXI A16 address space (64 Kbyte pages).

I_MAP_A24 VXI A24 address space (64 Kbyte pages).

I_MAP_A32 VXI A32 address space (64 Kbyte pages).
Chapter 11 281

SICL Language Reference
IMAPINFO
If resource constraints prevent a mapping request, the imap function will
“hang”, waiting for the resources to become available. Remember to unmap
a memory space when you no longer need it. The resources may be needed
by another process.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IMAP, IUNMAP
282 Chapter 11

SICL Language Reference
IONERROR
IONERROR
C Syntax

#include <sicl.h>

int ionerror(proc);
void (*proc)(id, error);
INST id;
int error;

Description

The ionerror function is used to install a SICL error handler. Many SICL
functions can generate an error. When a SICL function errors, it typically
returns a special value such as a NULL pointer, zero, or a non-zero error
code. A process can specify a procedure to execute when a SICL error
occurs. This allows your process to ignore the return value and permit the
error handler to detect errors and do the appropriate action.

The error handler procedure executes immediately before the SICL function
that generated the error completes its operation. There is only one error
handler for a given process that handles all errors that occur with any
session established by that process.

On operating systems that support multiple threads, the error handler is
still per-process. However, the error handler will be called in the context of
the thread that caused the error. Error handlers are called with the following
arguments, where the id argument indicates the session that generated the
error and the error argument indicates the error that occurred. See Appendix
C - SICL Error Codes for a description of the error codes.

void proc (id, error);
INST id;
int error;

NOTE

For Visual Basic, error handlers are installed using the Visual Basic
On Error statement. See Chapter 3 - Programming with SICL for more
information on error handling with Visual Basic.
Chapter 11 283

SICL Language Reference
IONERROR
The INST id passed to the error handler is the same INST id that was
passed to the function that generated the error. Therefore, if an error
occurred because of an invalid INST id, the INST id passed to the error
handler is also invalid. Also, if iopen generates an error before a session
has been established, the error handler will be passed a zero (0) INST id.

Two special reserved values of proc can be passed to the ionerror
procedure. If a zero (0) is passed as the value of proc, it will remove the
error handler. The error procedure could perform a setjmp/longjmp or an
escape using the try/recover clauses.

Example for using setjmp/longjmp:

#include <sicl.h>

INST id;
jmp_buf env;
... void proc (INST,int) {

/* Error occurred, perform a longjmp */
longjmp (env, 1);

}

void xyzzy () {
if (setjmp (env) == 0) {

/* Normal code */
ionerror (proc);

/* Do actions that could cause errors */
iwrite (.......);
iread (........);
...etc...

ionerror (0);
} else {

/* Error Code */
ionerror (0);
... do error processing ...
if (igeterrno () ==...)

I_ERROR_EXIT This value installs a special error handler which logs a
diagnostic message and terminates the process.

I_ERROR_NO_EXIT This value also installs a special error handler which
logs a diagnostic message but does not terminate the
process.
284 Chapter 11

SICL Language Reference
IONERROR
... etc ...;
}

}

Or, using try/recover/escape:

#include <sicl.h>

INST id;
...
void proc (INST id, int error) {

/* Error occurred, perform an escape */
escape (id);

}
void xyzzy () {

try {
/* Normal code */
ionerror (proc);

/* Do actions that could cause errors */
iwrite (.......);
iread (........);
...etc...

ionerror (0);
} recover {

/* Error Code */
ionerror (0);
... do error processing ...
if (igeterrno () == ...)

... etc ...;
}

}

Return Value

This function returns zero (0) if successful or a non-zero error number if
an error occurs.

See Also

IGETONERROR, IGETERRNO, IGETERRSTR, ICAUSEERR
Chapter 11 285

SICL Language Reference
IONINTR
IONINTR
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int ionintr (id, proc);
INST id;
void (*proc)(id, reason, secval);
 INST id;
 long reason;
 long secval;

Description

This function is not supported on Visual Basic.The library can notify a
process when an interrupt occurs by using the ionintr function. This
function installs the procedure proc as an interrupt handler. To remove the
interrupt handler, pass a zero (0) in the proc parameter. By default, no
interrupt handler is installed.

After you install the interrupt handler with ionintr, use the isetintr
function to enable notification of the interrupt event or events. The library
calls the proc procedure whenever an enabled interrupt occurs. It calls
proc with the following parameters:

id The INST that refers to the session that installed the
interrupt handler.

reason Contains a value that corresponds to the reason for the
interrupt. These values correspond to the isetintr
function parameter intnum.

secval Contains a secondary value that depends on the type of
interrupt which occurred. For I_INTR_TRIG, it contains
a bit mask corresponding to the trigger lines that fired.
For interface-dependent and device-dependent
interrupts, contains an appropriate value for that
interrupt.
286 Chapter 11

SICL Language Reference
IONINTR
The reason parameter specifies the cause for the interrupt. Valid reason
values for all interface sessions are:

Valid reason values for all device sessions are:

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

ISETINTR, IGETONINTR, IWAITHDLR, IINTROFF, IINTRON for protecting
I/O calls against interrupts.

I_INTR_INTFACT Interface became active.

I_INTR_INTFDEACT Interface became deactivated.

I_INTR_TRIG A Trigger occurred. The secval parameter contains a
bit-mask specifying which triggers caused the
interrupt. See the ixtrig function’s which
parameter for a list of valid values.

I_INTR_* Individual interfaces may use other interface-
interrupt conditions.

I_INTR_* Individual interfaces may include other interface-
interrupt conditions.
Chapter 11 287

SICL Language Reference
IONSRQ
IONSRQ
Supported sessions: . device, interface

C Syntax
#include <sicl.h>

int ionsrq (id, proc);
INST id;
void (*proc)(id);
 INST id;

Description

This function is not supported on Visual Basic. Use the ionsrq function
to notify an application when an SRQ occurs. This function installs the
procedure proc as an SRQ handler. To remove an SRQ handler, pass a
zero (0) as the proc parameter.

An SRQ handler is called any time its corresponding interface generates an
SRQ. If an interface device driver receives an SRQ and cannot determine
the generating device (for example, on GPIB), it passes the SRQ to all
SRQ handlers assigned to the interface.

Therefore, an SRQ handler cannot assume that its corresponding device
actually generated an SRQ. An SRQ handler should use the ireadstb
function to determine whether its corresponding device generated the SRQ.
It calls proc with the following parameters:

void proc (id);
INST id;

Return Value

This function returns zero (0) if successful or a non-zero error number if
an error occurs.

See Also

IGETONSRQ, IWAITHDLR, IINTROFF, IINTRON, IREADSTB
288 Chapter 11

SICL Language Reference
IOPEN
IOPEN
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

INST iopen (addr);
char *addr

Visual Basic Syntax
Function iopen
(ByVal addr As String)

Description

Before using any of the SICL functions, the application program must
establish a session with the desired interface or device. Create a session
using the iopen function. This function creates a session and returns a
session identifier. The session identifier should only be passed as a
parameter to other SICL functions. It is not designed to be updated
manually.

The addr parameter contains the device, interface, or commander address.
An application may have multiple sessions open at the same time by
creating multiple session identifiers with the iopen function. If an error
handler has been installed (see ionerror) and an iopen generates an
error before a session has been established, the handler will be called with
the session identifier set to zero (0).

Caution must be used if using the session identifier in an error handler.
Also, it is possible for an iopen to succeed on a device that does not exist.
In this case, other functions (such as iread) will fail with a nonexistent
device error.

&UHDWLQJ�$�'HYLFH�
6HVVLRQ

To create a device session, specify a particular interface name followed by
the device’s address in the addr parameter. For more information on
addressing devices, see Chapter 3 - Programming with SICL.
Chapter 11 289

SICL Language Reference
IOPEN
C example:

INST dmm;
dmm = iopen(“hpib,15”);

Visual Basic example:

DIM dmm As Integer
dmm = iopen(“hpib,15”)

&UHDWLQJ�$Q�
,QWHUIDFH�6HVVLRQ

To create an interface session, specify a particular interface in the addr
parameter. For more information on addressing interfaces, see Chapter 3 -
Programming with SICL.

C example:

INST hpib;
hpib = iopen(“hpib”);

Visual Basic example:

DIM hpib As Integer
hpib = iopen(“hpib”)

&UHDWLQJ�$�
&RPPDQGHU�
6HVVLRQ

To create a commander session, use the keyword cmdr in the addr
parameter. For more information on commander sessions, see
Chapter 3 - Programming with SICL.

C example:

INST cmdr;
cmdr = iopen(“hpib,cmdr”);

Visual Basic example:

DIM cmdr As Integer
cmdr = iopen(“hpib,cmdr”)

Return Value

The iopen function returns a zero (0) id value if an error occurs.
Otherwise, a valid session id is returned.

See Also

ICLOSE
290 Chapter 11

SICL Language Reference
IPEEK
IPEEK
C Syntax

#include <sicl.h>

unsigned char ibpeek (addr);
unsigned char *addr;

unsigned short iwpeek (addr);
unsigned short *addr;

unsigned long ilpeek (addr);
unsigned long *addr;

Visual Basic Syntax
Function ibpeek
(ByVal addr As Long) As Byte

Function iwpeek
(ByVal addr As Long) As Integer

Function ilpeek
(ByVal addr As Long) As Long

Description

This function is not recommended for new program development. Use
IPEEKX8, IPEEKX16, or IPEEKX32 instead. This function is not supported
over LAN.

The i?peek functions will read the value stored at addr from memory and
return the result. The i?peek functions are generally used in conjunction
with the SICL imap function to read data from VXI address space.

The iwpeek and ilpeek functions perform byte swapping (if necessary)
so that VXI memory accesses follow correct VXI byte ordering. If a bus error
occurs, unexpected results may occur.

See Also

IPOKE, IMAP
Chapter 11 291

SICL Language Reference
IPEEKX8, IPEEKX16, IPEEKX32
IPEEKX8, IPEEKX16, IPEEKX32
C Syntax

#include <sicl.h>

int ipeekx8 (id, handle, offset, *value);
INST id;
unsigned long handle;
unsigned long offset;
unsigned char *value;

int ipeekx16 (id, handle, offset, *value);
INST id;
unsigned long handle;
unsigned long offset;
unsigned short *value

int ipeekx32 (id, handle, offset, *value);
INST id;
unsigned long handle;
unsigned long offset;
unsigned long *value))

Visual Basic Syntax
Function ipeekx8
(ByVal id As Integer, ByVal handle As Long,
ByVal offset as Long, ByVal value As Integer)

(syntax is the same for ipeekx16 and ipeekx32)

Description

This function is not supported over LAN. The ipeekx8, ipeekx16,
and ipeekx32 functions read the values stored at handle and offset from
memory and returns the value from that address. These functions are
generally used in conjunction with the SICL imapx function to read data
from VXI address space. The ipeekx8 and ipeekx16 functions perform
byte swapping (if necessary) so that VXI memory accesses follow correct
VXI byte ordering. If a bus error occurs, unexpected results may occur.

See Also

IPOKEX8, IPOKEX16, IPOKEX32, IMAPX
292 Chapter 11

SICL Language Reference
IPOKE
IPOKE
C Syntax

#include <sicl.h>

void ibpoke (addr, val);
unsigned char *addr;
unsigned char val;

void iwpoke (addr, val);
unsigned short *addr;
unsigned short val;

void ilpoke (addr, val);
unsigned long *addr;
unsigned long val;

Visual Basic Syntax
Sub ibpoke
(ByVal addr As Long, ByVal value As Integer)

Sub iwpoke
(ByVal addr As Long, ByVal value As Integer)

Sub ilpoke
(ByVal addr As Long, ByVal value As Long)

Description
This function is not recommended for new program development. Use
IPOKEX8, IPOKEX16, or IPOKEX32 instead. This function is not
supported over LAN. The i?poke functions will write to memory. The
i?poke functions are generally used in conjunction with the SICL
imap function to write to VXI address space. addr is a valid memory
address. val is a valid data value.

The iwpoke and ilpoke functions perform byte swapping (if necessary)
so that VXI memory accesses follow correct VXI byte ordering. If a bus
error occurs, unexpected results may occur.

See Also

IPEEK, IMAP
Chapter 11 293

SICL Language Reference
IPOKEX8, IPOKEX16, IPOKEX32
IPOKEX8, IPOKEX16, IPOKEX32
C Syntax

#include <sicl.h>

int ipokex8 (id, handle, offset, value);
INST id;
unsigned long handle;
unsigned long offset;
unsigned char value;

int ipokex16 (id, handle, offset, value);
INST id;
unsigned long handle;
unsigned long offset;
unsigned short value;

int ipokex32 (id, handle, offset, value);
INST id;
unsigned long handle;
unsigned long offset;
unsigned long value;

Visual Basic Syntax
Sub ipokex8
(ByVal id As Integer, ByVal handle As Long,
ByVal offset as Long, ByVal value As Integer)

(syntax is the same for ipokex16 and ipokex32.)

Description

This function is not supported over LAN. The ipokex8, ipokex16, and
ipokex32 functions write to memory. The functions are generally used in
conjunction with the SICL imapx function to write to VXI address space.
handle is a valid memory address, offset is a valid memory offset. val is a
valid data value. The ipokex16 and ipokex32 functions perform byte
swapping (if necessary) so that VXI memory accesses follow correct VXI
byte ordering. If a bus error occurs, unexpected results may occur.

See Also

IPEEKX8, IPEEKX16, IPEEKX32, IMAPX
294 Chapter 11

SICL Language Reference
IPOPFIFO
IPOPFIFO
C Syntax

#include <sicl.h>

int ibpopfifo (id, fifo, dest, cnt);
INST id;
unsigned char *fifo;
unsigned char *dest;
unsigned long cnt;

int iwpopfifo (id, fifo, dest, cnt, swap);
INST id;
unsigned char *fifo;
unsigned char *dest;
unsigned long cnt;
int swap;

int ilpopfifo (id, fifo, dest, cnt, swap);
INST id;
unsigned char *fifo;
unsigned char *dest;
unsigned long cnt;
int swap;

Visual Basic Syntax
Function ibpopfifo
(ByVal id As Integer, ByVal fifo As Long,
 ByVal dest As Long, ByVal cnt As Long)

Function iwpopfifo
(ByVal id As Integer, ByVal fifo As Long,
 ByVal dest As Long, ByVal cnt As Long,
 ByVal swap As Integer)

Function ilpopfifo
(ByVal id As Integer, ByVal fifo As Long,
 ByVal dest As Long, ByVal cnt As Long,
 ByVal swap As Integer)
Chapter 11 295

SICL Language Reference
IPOPFIFO
Description

This function is not supported over LAN. The i?popfifo functions read
data from a FIFO and puts data in memory. Use b for byte, w for word,
and l for long word (8-bit, 16-bit, and 32-bit, respectively). These functions
increment the write address, to write successive memory locations, while
reading from a single memory (FIFO) location. Thus, these functions can
transfer entire blocks of data.

The id, although specified, is normally ignored except to determine an
interface-specific transfer mechanism such as DMA. To prevent using an
interface-specific mechanism, pass a zero (0) in this parameter.

The dest argument is the starting memory address for the destination data.
The fifo argument is the memory address for the source FIFO register data.
The cnt argument is the number of transfers (bytes, words, or longwords) to
perform.

The swap argument is the byte swapping flag. If swap is zero, no swapping
occurs. If swap is non-zero, the function swaps bytes (if necessary) to
change byte ordering from the internal format of the controller to/from the
VXI (big-endian) byte ordering. If a bus error occurs, unexpected results may
occur.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IPEEK, IPOKE, IPUSHFIFO, IMAP
296 Chapter 11

SICL Language Reference
IPRINTF
IPRINTF
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iprintf (id, format [,arg1][,arg2][,...]);
int isprintf (buf, format [,arg1][,arg2][,...]);
int ivprintf (id, format, va_list ap);
int isvprintf (buf, format, va_list ap);
INST id;
char *buf;
const char *format;
param arg1, arg2, ...;
va_list ap;

Visual Basic Syntax
Function ivprintf
(ByVal id As Integer, ByVal fmt As String,
 ByVal ap As Any)

Description

These functions convert data under the control of the format string. The
format string specifies how the argument is converted before it is output.
If the first argument is an INST, data are sent to the device to which the
INST refers. If the first argument is a character buffer, data are placed in the
buffer.

The format string contains regular characters and special conversion
sequences. The iprintf function sends the regular characters (not a %
character) in the format string directly to the device. Conversion
specifications are introduced by the % character. Conversion specifications
control the type, the conversion, and the formatting of the arg parameters.

NOTE

The formatted I/O functions, iprintf and ipromptf, can re-address
the bus multiple times during execution. This behavior may cause
problems with instruments that do not comply with IEEE 488.2.
Chapter 11 297

SICL Language Reference
IPRINTF
Re-addressing occurs under the following circumstances. This behavior
affects only non-IEEE 488.2 devices on the GPIB interface. Use the special
characters and conversion commands explained later in this section to
create the format string’s contents.:

n After the internal buffer fills. (See isetbuf.)

n When a \n is found in the format string in C/C++ or when a
Chr$(10) is found in the format string in Visual Basic.

n When a %C is found in the format string.

5HVWULFWLRQV�8VLQJ�
ivprintf LQ�
9LVXDO�%DVLF

Format Conversion Commands: Only one format conversion command can
be specified in a format string for ivprintf (a format conversion command
begins with the % character). For example, the following is invalid:

nargs% = ivprintf(id, “%lf%d” + Chr$(10), ...)

Instead, you must call ivprintf once for each format conversion
command, as shown in the following example:

nargs% = ivprintf(id, “%lf” + Chr$(10), dbl_value)
nargs% = ivprintf(id, “%d” + Chr$(10), int_value)

Writing Numeric Arrays: For Visual Basic, when writing from a numeric array
with ivprintf, you must specify the first element of a numeric array as the
ap parameter to ivprintf. This passes the address of the first array
element to ivprintf. For example:

Dim flt_array(50) As Double
nargs% = ivprintf(id, “%,50f”, dbl_array(0))

This code declares an array of 50 floating point numbers and then calls
ivprintf to write from the array. For more information on passing numeric
arrays as arguments with Visual Basic, see the “Arrays” section of the
“Calling Procedures in DLLs” chapter of the Visual Basic Programmer’s
Guide.

Writing Strings: The %S format string is not supported for ivprintf on
Visual Basic.
298 Chapter 11

SICL Language Reference
IPRINTF
6SHFLDO�&KDUDFWHUV�
IRU�&�&��

Special characters in C/C++ consist of a backslash (\) followed by another
character. The special characters are:

6SHFLDO�&KDUDFWHUV�
IRU�9LVXDO�%DVLF

Special characters in Visual Basic are specified with the CHR$() function.
These special characters are added to the format string by using the + string
concatenation operator in Visual Basic. For example:

nargs=ivprintf(id, “*RST”+CHR$(10), 0&)

The special characters are:

\n Send the ASCII LF character with the END indicator set.

\r Send the ASCII CR character.

\\ Send the backslash (\) character.

\t Send the ASCII TAB character.

\### Send the ASCII character specified by the octal value ###.

\v Send the ASCII VERTICAL TAB character.

\f Send the ASCII FORM FEED character.

\" Send the ASCII double-quote (") character.

Chr$(10) Send the ASCII LF character with the END indicator set.

Chr$(13) Send the ASCII CR character.

\ Sends the backslash (\) character.1

1. In Visual Basic, the backslash character can be specified in a format
string directly, instead of being “escaped” by prepending it with another
backslash.

Chr$(9) Send the ASCII TAB character.

Chr$(11) Send the ASCII VERTICAL TAB character.

Chr$(12) Send the ASCII FORM FEED character.

Chr$(34) Send the ASCII double-quote (") character.
Chapter 11 299

SICL Language Reference
IPRINTF
)RUPDW�&RQYHUVLRQ�
&RPPDQGV

An iprintf format conversion command begins with a % character. After
the % character, the optional modifiers appear in this order: format flags, field
width, a period and precision, a comma and array size (comma operator),
and an argument modifier. The command ends with a conversion character.

Modifiers in a conversion command are:

%

format
flags

field
width

. precision array
size

argument
modifier

conv
char

,

format flags Zero or more flags (in any order) that modify the
meaning of the conversion character. See the following
subsection, “List of format flags” for the specific flags
you may use.

field width An optional minimum field width is an integer (such as
“%8d”). If the formatted data has fewer characters than
field width, it will be padded. The padded character is
dependent on various flags.

In C/C++, an asterisk (*) may appear for the integer,
in which case it will take another arg to satisfy this
conversion command. The next arg will be an integer
that will be the field width (for example, iprintf (id,
“%*d”, 8, num)).
300 Chapter 11

SICL Language Reference
IPRINTF
. precision The precision operator is an integer preceded by a
period (such as “%.6d”). The optional precision for
conversion characters e, E, and f specifies the number
of digits to the right of the decimal point.

For the d, i , o, u, x , and X conversion characters, it
specifies the minimum number of digits to appear. For
the s and S conversion characters, the precision
specifies the maximum number of characters to be read
from your arg string.

In C/C++, an asterisk (*) may appear in the place of the
integer, in which case it will take another arg to satisfy
this conversion command. The next arg will be an
integer that will be the precision (for example,
iprintf (id, “%.*d”, 6, num)).

, array size The comma operator is an integer preceded by a
comma (such as “%,10d”). The optional comma
operator is only valid for conversion characters d and f .
This is a comma followed by a number.

This indicates a list of comma-separated numbers is to
be generated. The argument is an array of the specified
type instead of the type (that is, an array of integers
instead of an integer).

In C/C++, an asterisk (*) may appear for the number, in
which case it will take another arg to satisfy this
conversion command. The next arg will be an integer
that is the number of elements in the array.

argument modifier The meaning of the modifiers h, l , w, z , and Z is
dependent on the conversion character (such as
“%wd”).

conv char A conversion character is a character that specifies the
type of arg and the conversion to be applied. This is the
only required element of a conversion command. See
the following subsection, “List of conv chars” for the
specific conversion characters you may use.
Chapter 11 301

SICL Language Reference
IPRINTF
([DPSOHV�RI�)RUPDW�
&RQYHUVLRQ�
&RPPDQGV

Some examples follow of conversion commands used in the format string
and the output that would result from them. (The output data is arbitrary.)

/LVW�RI�IRUPDW�IODJV format flags you can use in conversion commands are:

Conversion

Command

Output Description

%@Hd #H3A41 format flag

%10s str field width

%-10s str format flag (left justify) & field width

%.6f 21.560000 precision

%,3d 18,31,34 comma operator

%6ld 132 field width & argument modifier (long)

%.6ld 000132 precision & argument modifier (long)

%@1d 61 format flag (IEEE 488.2 NR1)

%@2d 61.000000 format flag (IEEE 488.2 NR2)

%@3d 6.100000E+01 format flag (IEEE 488.2 NR3)

@1 Convert to an NR1 number (an IEEE 488.2 format integer with no
decimal point). Valid only for %d and %f. %f values will be truncated
to the integer value.

@2 Convert to an NR2 number (an IEEE 488.2 format floating point
number with at least one digit to the right of the decimal point).
Valid only for %d and %f.

@3 Convert to an NR3 number (an IEEE 488.2 format number
expressed in exponential notation). Valid only for %d and %f.

@H Convert to an IEEE 488.2 format hexadecimal number in the form
#Hxxxx. Valid only for %d and %f. %f values will be truncated to the
integer value.

@Q Convert to an IEEE 488.2 format octal number in the form #Qxxxx.
Valid only for %d and %f. %f values will be truncated to the integer
value.
302 Chapter 11

SICL Language Reference
IPRINTF
/LVW�RI�FRQY�FKDUV conv chars (conversion characters) you can use in conversion commands
are:

@B Convert to an IEEE 488.2 format binary number in the form #Bxxxx.
Valid only for %d and %f. %f values will be truncated to the integer
value.

- Left justify the result.

+ Prefix the result with a sign (+ or -) if the output is a signed type.

space Prefix the result with a blank () if the output is signed and positive.
Ignored if both blank and + are specified.

Use alternate form. For the o conversion, it prints a leading zero. For
x or X, a non-zero will have 0x or 0X as a prefix. For e, E, f, g, and
G, the result will always have one digit on the right of the decimal
point.

0 Will cause the left pad character to be a zero (0) for all numeric
conversion types.

d Corresponding arg is an integer. If no flags are given, send the
number in IEEE 488.2 NR1 (integer) format. If flags indicate an
NR2 (floating point) or NR3 (floating point) format, convert the
argument to a floating point number.

This argument supports all six flag modifier formatting options:
NR1 - @1, NR2 - @2, NR3 - @3, @H, @Q, or @B. If the l argument
modifier is present, the arg must be a long integer. If the h
argument modifier is present, the arg must be a short integer for
C/C++ or an Integer for Visual Basic.

f Corresponding arg is a double for C/C++, or a Double for Visual
Basic. If no flags are given, send the number in IEEE 488.2 NR2
(floating point) format. If flags indicate that NR1 format is to be
used, the arg will be truncated to an integer.

This argument supports all six flag modifier formatting options:
NR1 - @1, NR2 - @2, NR3 - @3, @H, @Q, or @B. If the l argument
modifier is present, the arg must be a double. If the L argument
modifier is present, the arg must be a long double for C/C++ (not
supported for Visual Basic).
Chapter 11 303

SICL Language Reference
IPRINTF
b In C/C++, corresponding arg is a pointer to an arbitrary block of
data. (Not supported in Visual Basic.) The data is sent as IEEE
488.2 Definite Length Arbitrary Block Response Data. The field
width must be present and will specify the number of elements in
the data block.

An asterisk (*) can be used in place of the integer, which indicates
that two args are used. The first is a long used to specify the
number of elements. The second is the pointer to the data block.
No byte swapping is performed.

If the w argument modifier is present, the block of data is an array
of unsigned short integers. The data block is sent to the device as
an array of words (16 bits). The field width value now corresponds
to the number of short integers, not bytes. Each word will be
appropriately byte swapped and padded so that they are
converted from the internal computer format to the standard IEEE
488.2 format.

If the l argument modifier is present, the block of data is an array
of unsigned long integers. The data block is sent to the device as
an array of longwords (32 bits). The field width value now
corresponds to the number of long integers, not bytes. Each word
will be appropriately byte swapped and padded so that they are
converted from the internal computer format to the standard IEEE
488.2 format.

If the z argument modifier is present, the block of data is an array
of floats. The data is sent to the device as an array of 32-bit IEEE
754 format floating point numbers. The field width is the number of
floats.

If the Z argument modifier is present, the block of data is an array
of doubles. The data is sent to the device as an array of 64-bit
IEEE 754 format floating point numbers. The field width is the
number of doubles.

B Same as b in C/C++, except that the data block is sent as IEEE
488.2 Indefinite Length Arbitrary Block Response Data. (Not
supported in Visual Basic.) Note that this format involves sending
a newline with an END indicator on the last byte of the data block.

c In C/C++, corresponding arg is a character. (Not supported in
Visual Basic.)

C In C/C++, corresponding arg is a character. Send with END
indicator. (Not supported in Visual Basic.)
304 Chapter 11

SICL Language Reference
IPRINTF
t In C/C++, control sending the END indicator with each LF
character in the format string. (Not supported in Visual Basic.) A +
flag indicates to send an END with each succeeding LF character
(default), a - flag indicates to not send END. If no + or - flag
appears, an error is generated.

s Corresponding arg is a pointer to a null-terminated string that is
sent as a string.

S In C/C++, corresponding arg is a pointer to a null-terminated string
that is sent as an IEEE 488.2 string response data block. (Not
supported in Visual Basic.) An IEEE 488.2 string response data
block consists of a leading double quote (”) followed by non-
double quote characters and terminated with a double quote.

% Send the ASCII percent (%) character.

i Corresponding arg is an integer. Same as d except that the six flag
modifier formatting options: NR1 - @1, NR2 - @2, NR3 - @3, @H, @Q,
or @B are ignored.

o,u,x,X Corresponding arg will be treated as an unsigned integer. The
argument is converted to an unsigned octal (o), unsigned decimal
(u), or unsigned hexadecimal (x ,X). The letters abcdef are used
with x , and the letters ABCDEF are used with X.

The precision specifies the minimum number of characters to
appear. If the value can be represented with fewer than precision
digits, leading zeros are added. If the precision is set to zero and
the value is zero, no characters are printed.

e,E Corresponding arg is a double in C/C++, or a Double in Visual
Basic. The argument is converted to exponential format (that is, [-
]d.dddde+/-dd). The precision specifies the number of digits to
the right of the decimal point. If no precision is specified, six digits
will be converted. The letter e will be used with e and the letter E
will be used with E.

g,G Corresponding arg is a double in C/C++, or a Double in Visual
Basic. The argument is converted to exponential (e with g, or E
with G) or floating point format depending on the value of the arg
and the precision. The exponential style will be used if the
resulting exponent is less than -4 or greater than the precision;
otherwise it will be printed as a float.
Chapter 11 305

SICL Language Reference
IPRINTF
%XIIHUV�DQG�(UURUV Since iprintf does not return an error code and data is buffered before it
is sent, it cannot be assumed that the device received any data after the
iprintf has completed. The best way to detect errors is to install your own
error handler. This handler can decide the best action to take depending on
the error that has occurred.

If an error has occurred during an iprintf with no error handler installed,
the only way you can be informed that an error has occurred is to use
igeterrno right after the iprintf call.

iprintf can be called many times without any data being flushed to the
session. There are only three conditions where the write formatted I/O buffer
is flushed. Those conditions are:

n If a newline is encountered in the format string.
n If the buffer is filled.
n If iflush is called with the I_BUF_WRITE value.

If an error occurs while writing data, such as a timeout, the buffer will be
flushed (that is, data will be lost). If an error handler is installed, it will
be called or the error number will be set to the appropriate value.

Return Value

This function returns the total number of arguments converted by the format
string.

See Also

ISCANF, IPROMPTF, IFLUSH, ISETBUF, ISETUBUF, IFREAD, IFWRITE

n Corresponding arg is a pointer to an integer in C/C++, or an
Integer for Visual Basic. The number of bytes written to the device
for the entire iprintf call is written to the arg. No argument is
converted.

F On HP-UX or Windows NT/Windows 2000, corresponding arg is a
pointer to a FILE descriptor. (Not supported on Windows 95/
Windows 98.) The data will be read from the file that the FILE
descriptor points to and written to the device. The FILE descriptor
must be opened for reading. No flags or modifiers are allowed with
this conversion character.
306 Chapter 11

SICL Language Reference
IPROMPTF
IPROMPTF
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ipromptf (id, writefmt, readfmt[, arg1][, arg2][, ...]);
int ivpromptf (id, writefmt, readfmt, va_list ap);
INST id;
const char *writefmt;
const char *readfmt;
param arg1,arg2,...;
va_list ap;

Description

This function is not supported on Visual Basic. The ipromptf function is
used to perform a formatted write immediately followed by a formatted read.
This function is a combination of the iprintf and iscanf functions.

First, it flushes the read buffer. Next, it formats a string using the writefmt
string and the first n arguments necessary to implement the prompt string.
The write buffer is then flushed to the device. Then, it then uses the readfmt
string to read data from the device and to format it appropriately.

The writefmt string is identical to the format string used for the iprintf
function. The readfmt string is identical to the format string used for the
iscanf function. It uses the arguments immediately following those
needed to satisfy the writefmt string. This function returns the total number
of arguments used by both the read and write format strings.

See Also

IPRINTF, ISCANF, IFLUSH, ISETBUF, ISETUBUF, IFREAD, IFWRITE
Chapter 11 307

SICL Language Reference
IPUSHFIFO
IPUSHFIFO
C Syntax

#include <sicl.h>

int ibpushfifo (id, src, fifo, cnt);
INST id;
unsigned char *src;
unsigned char *fifo;
unsigned long cnt;

int iwpushfifo (id, src, fifo, cnt, swap);
INST id;
unsigned short *src;
unsigned short *fifo;
unsigned long cnt;
int swap;

int ilpushfifo (id, src, fifo, cnt, swap);
INST id;
unsigned long *src;
unsigned long *fifo;
unsigned long cnt;
int swap;

Visual Basic Syntax
Function ibpushfifo
(ByVal id As Integer, ByVal src As Long,
 ByVal fifo As Long, ByVal cnt As Long)

Function iwpushfifo
(ByVal id As Integer, ByVal src As Long,
 ByVal fifo As Long, ByVal cnt As Long,
 ByVal swap As Integer)

Function ilpushfifo
(ByVal id As Integer, ByVal src As Long,
 ByVal fifo As Long, ByVal cnt As Long,
 ByVal swap As Integer)
308 Chapter 11

SICL Language Reference
IPUSHFIFO
Description

This function is not supported over LAN. The i?pushfifo functions copy
data from memory on one device to a FIFO on another device. Use b for
byte, w for word, and l for long word (8-bit, 16-bit, and 32-bit, respectively).
These functions increment the read address to read successive memory
locations while writing to a single memory (FIFO) location. Thus, they can
transfer entire blocks of data.

The id, although specified, is normally ignored except to determine an
interface-specific transfer mechanism such as DMA. To prevent using an
interface-specific mechanism, pass a zero (0) in this parameter.

The src argument is the starting memory address for the source data. The
fifo argument is the memory address for the destination FIFO register data.
The cnt argument is the number of transfers (bytes, words, or longwords) to
perform.

The swap argument is the byte swapping flag. If swap is zero, no swapping
occurs. If swap is non-zero the function swaps bytes (if necessary) to
change byte ordering from the internal format of the controller to/from the
VXI (big-endian) byte ordering. If a bus error occurs, unexpected results may
occur.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IPOPFIFO, IPOKE, IPEEK, IMAP
Chapter 11 309

SICL Language Reference
IREAD
IREAD
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iread (id, buf, bufsize, reason, actualcnt);
INST id;
char *buf;
unsigned long bufsize;
int *reason;
unsigned long *actualcnt;

Visual Basic Syntax
Function iread
(ByVal id As Integer, buf As String,
 ByVal bufsize As Long, reason As Integer,
 actual As Long)

Description

This function reads raw data from the device or interface specified by id.
The buf argument is a pointer to the location where the block of data can be
stored. The bufsize argument is an unsigned long integer containing the
size, in bytes, of the buffer specified in buf.

The reason argument is a pointer to an integer that, on exiting the iread
call, contains the reason why the read terminated. If the reason parameter
contains a zero (0), no termination reason is returned. Reasons include:

The actualcnt argument is a pointer to an unsigned long integer. Upon exit,
this contains the actual number of bytes read from the device or interface.
If the actualcnt parameter is NULL, the number of bytes read will not be
returned.

I_TERM_MAXCNT bufsize characters read.

I_TERM_END END indicator received on last character.

I_TERM_CHR Termination character enabled and received.
310 Chapter 11

SICL Language Reference
IREAD
To pass a NULL reason or actualcnt parameter to iread in Visual Basic,
use the expression 0&. For LAN, if the client times out prior to the server
the actualcnt returned will be 0, even though the server may have read some
data from the device or interface.

This function reads data from the specified device or interface and stores it
in buf up to the maximum number of bytes allowed by bufsize. The read
terminates only on one of the following conditions:

n It reads bufsize number of bytes.
n It receives a byte with the END indicator attached.
n It receives the current termination character (set with termchr).
n An error occurs.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IWRITE, ITERMCHR, IFREAD, IFWRITE
Chapter 11 311

SICL Language Reference
IREADSTB
IREADSTB
Supported sessions: . device
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ireadstb (id, stb);
INST id;
unsigned char *stb;

Visual Basic Syntax
Function ireadstb
(ByVal id As Integer, stb As String)

Description

The ireadstb function reads the status byte from the device specified by
id. The stb argument is a pointer to a variable which will contain the status
byte upon exit.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IONSRQ, ISETSTB
312 Chapter 11

SICL Language Reference
IREMOTE
IREMOTE
Supported sessions: .device
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iremote (id);
INST id;

Visual Basic Syntax
Function iremote
(ByVal id As Integer)

Description

Use the iremote function to put a device into remote mode. Placing a
device in remote mode disables the device’s front panel interface.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ILOCAL and the interface-specific chapter in this manual for details of
implementation.
Chapter 11 313

SICL Language Reference
ISCANF
ISCANF
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iscanf (id, format [,arg1][,arg2][,...]);
int isscanf (buf, format [,arg1][,arg2][,...]);
int ivscanf (id, format, va_list ap);
int isvscanf (buf, format, va_list ap);
INST id;
char *buf;
const char *format;
ptr arg1, arg2, ...;
va_list ap;

Visual Basic Syntax
Function ivscanf
(ByVal id As Integer, ByVal fmt As String,
 ByRef ap As Any)

Description

These functions read formatted data, convert the data, and store the results
into args. These functions read bytes from the specified device or from buf
and convert them using conversion rules contained in the format string. The
number of args converted is returned. The format string contains:

n White-space characters, which are spaces, tabs, or special
characters. Use the white-space characters and conversion
commands to create the format string’s contents.

n An ordinary character (not %), which must match the next
non-white-space character read from the device.

n Format conversion commands.
314 Chapter 11

SICL Language Reference
ISCANF
1RWHV�RQ�8VLQJ�
iscanf

Using itermchr with iscanf. The iscanf function only terminates
reading on an END indicator or the termination character specified by
itermchar.

Using iscanf with Certain Instruments. The iscanf function cannot be
used easily with instruments that do not send an END indicator.

Buffer Management with iscanf. By default, iscanf does not flush its internal
buffer after each call. This means data left from one call of iscanf can be
read with the next call to iscanf. One side effect of this is that successive
calls to iscanf may yield unexpected results. For example, reading the
following data:

“1.25\r\n”
“1.35\r\n”
“1.45\r\n”

with:

iscanf(id, “%lf”, &res1); /* Will read the 1.25 */
iscanf(id, “%lf”, &res2); /* Will read the \r\n */
iscanf(id, “%lf”, &res3); /* Will read the 1.35 */

There are four ways to get the desired results:

1. Use the newline and carriage return characters at the end of the
format string to match the input data. This is the recommended
approach. For example:

iscanf(id, “%lf%\r\n”, &res1);
iscanf(id, “%lf%\r\n”, &res2);
iscanf(id, “%lf%\r\n”, &res3);

2. Use isetbuf with a negative buffer size. This will create a buffer
the size of the absolute value of bufsize. This also sets a flag that
tells iscanf to flush its buffer after every iscanf call.

isetbuf(id, I_BUF_READ, -128);

3. Do explicit calls to iflush to flush the read buffer.

iscanf(id, “%lf”, &res1);
iflush(id, I_BUF_READ);
iscanf(id, “%lf”, &res2);
iflush(id, I_BUF_READ);
iscanf(id, “%lf”, &res3);
Chapter 11 315

SICL Language Reference
ISCANF
iflush(id, I_BUF_READ);

4. Use the %*t conversion to read to the end of the buffer and
discard the characters read, if the last character has an END
indicator.

iscanf(id, “%lf%*t”, &res1);
iscanf(id, “%lf%*t”, &res2);
iscanf(id, “%lf%*t”, &res3);

5HVWULFWLRQV�8VLQJ�
ivscanf
LQ�9LVXDO�%DVLF

Format Conversion Commands. Only one format conversion command can
be specified in a format string for ivscanf (a format conversion command
begins with the % character). For example, the following is invalid:

nargs% = ivscanf(id, “%,50lf%,50d”, ...)

Instead, you must call ivscanf once for each format conversion command,
as shown in the following valid example:

nargs% = ivscanf(id, “%,50lf”, dbl_array(0))
nargs% = ivscanf(id, “%,50d”, int_array(0))

Reading in Numeric Arrays. For Visual Basic, when reading into a numeric
array with ivscanf , you must specify the first element of a numeric array
as the ap parameter to ivscanf . This passes the address of the first array
element to ivscanf . For example:

Dim preamble(50) As Double
nargs% = ivscanf(id, “%,50lf”, preamble(0))

This code declares an array of 50 floating point numbers and then calls
ivscanf to read into the array. For more information on passing numeric
arrays as arguments with Visual Basic, see the “Arrays” section of the
“Calling Procedures in DLLs” chapter of the Visual Basic Programmer’s
Guide.

Reading in Strings. For Visual Basic, when reading in a string value with
ivscanf, you must pass a fixed length string as the ap parameter to
ivscanf. For more information on fixed length strings with Visual Basic,
see the “String Types” section of the “Variables, Constants, and Data Types”
chapter of the Visual Basic Programmer’s Guide.
316 Chapter 11

SICL Language Reference
ISCANF
:KLWH�6SDFH�
&KDUDFWHUV�IRU�
&�&��

White-space characters are spaces, tabs, or special characters. For C/C++,
the white-space characters consist of a backslash (\) followed by another
character. The white-space characters are:

\t The ASCII TAB character
\v The ASCII VERTICAL TAB character
\f The ASCII FORM FEED character
space The ASCII space character

:KLWH�6SDFH�
&KDUDFWHUV�IRU�
9LVXDO�%DVLF

White-space characters are spaces, tabs, or special characters. For Visual
Basic, the white-space characters are specified with the Chr$() function.
The white-space characters are:

Chr$(9) The ASCII TAB character
Chr$(11) The ASCII VERTICAL TAB character
Chr$(12) The ASCII FORM FEED character
space The ASCII space character

)RUPDW�&RQYHUVLRQ�
&RPPDQGV

An iscanf format conversion command begins with a % character. After
the % character, the optional modifiers appear in this order: an assignment
suppression character (*), field width, a comma and array size (comma
operator), and an argument modifier. The command ends with a conversion
character.

%

field
width

,
*

array argument
modifier

conv
char

size
Chapter 11 317

SICL Language Reference
ISCANF
The modifiers in a conversion command are:

Unlike C’s scanf function, SICL’s iscanf functions do not treat the newline
(\n) and carriage return (\r) characters as white-space. Therefore, they are
treated as ordinary characters and must match input characters. (This does
not apply in Visual Basic.)

The conversion commands direct the assignment of the next arg. The
iscanf function places the converted input in the corresponding variable,
unless the * assignment suppression character causes it to use no arg and
to ignore the input. This function ignores all white-space characters in the
input stream.

* An optional, assignment suppression character (*). This
provides a way to describe an input field to be skipped. An input
field is defined as a string of non-white-space characters that
extends either to the next inappropriate character, or until the
field width (if specified) is exhausted.

field width An optional integer representing the field width. In
C/C++, if a pound sign (#) appears instead of the integer, the
next arg is a pointer to the field width. This arg is a pointer to an
integer for %c, %s, %t, and %S. This arg is a pointer to a long for
%b. The field width is not allowed for %d or %f.

, array size An optional comma operator is an integer preceded by a
comma. It reads a list of comma-separated numbers. The
comma operator is in the form of ,dd, where dd is the number
of array elements to read. In C/C++, a pound sign (#) can be
substituted for the number, in which case the next argument is a
pointer to an integer that is the number of elements in the array.

The function will set this to the number of elements read. This
operator is only valid with the conversion characters d and f.
The argument must be an array of the type specified.

argument
modifier

The meaning of the optional argument modifiers h, l, w, z, and
Z is dependent on the conversion character.

conv char A conversion character is a character that specifies the type of
arg and the conversion to be applied. This is the only required
element of a conversion command. See the following
subsection, “List of conv chars” for the specific conversion
characters you may use.
318 Chapter 11

SICL Language Reference
ISCANF
([DPSOHV�RI�)RUPDW�
&RQYHUVLRQ�
&RPPDQGV

Examples of conversion commands used in the format string and typical
input data that would satisfy the conversion commands follow

/LVW�RI�FRQY�FKDUV The conv chars (conversion characters) are:

Conversion
Command

Input Data Description

%*s onestring suppression (no assignment)

%*s %s two strings suppression (two) assignment (strings)

%,3d 21,12,61 comma operator

%hd 64 argument modifier (short)

%10s onestring field width

%10c onestring field width

%10t two strings field width (10 chars read into 1 arg)

d Corresponding arg must be a pointer to an integer for C/C++ or an
Integer in Visual Basic. The library reads characters until an entire
number is read. It will convert IEEE 488.2 HEX, OCT, BIN, and
NRf format numbers.

If the l (ell) argument modifier is used, the argument must be a
pointer to a long integer in C/C++ or it must be a Long in Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to a short integer for C/C++ or an Integer for Visual Basic.

i Corresponding arg must be a pointer to an integer in C/C++ or an
Integer in Visual Basic. The library reads characters until an entire
number is read. If the number has a leading zero (0), the number
will be converted as an octal number. If the data has a leading 0x
or 0X, the number will be converted as a hexadecimal number.

If the l (ell) argument modifier is used, the argument must be a
pointer to a long integer in C/C++ or it must be a Long for Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to a short integer for C/C++ or an Integer for Visual Basic.
Chapter 11 319

SICL Language Reference
ISCANF
f Corresponding arg must be a pointer to a float in C/C++ or a Single
in Visual Basic. The library reads characters until an entire number
is read. It will convert IEEE 488.2 HEX, OCT, BIN, and NRf format
numbers.

If the l (ell) argument modifier is used, the argument must be a
pointer to a double for C/C++ or it must be a Double for Visual
Basic. If the L argument modifier is used, the argument must be a
pointer to a long double for C/C++ (not supported for Visual Basic).

e,g Corresponding arg must be a pointer to a float for C/C++ or a
Single for Visual Basic. The library reads characters until an entire
number is read. If the l (ell) argument modifier is used, the
argument must be a pointer to a double for C/C++ or a Double for
Visual Basic. If the L argument modifier is used, the argument
must be a pointer to a long double for C/C++ (not supported for
Visual Basic).

c Corresponding arg is a pointer to a character sequence for
C/C++ or a fixed length String for Visual Basic. Reads the number
of characters specified by field width (default is 1) from the device
into the buffer pointed to by arg. White-space is not ignored with
%c. No null character is added to the end of the string.

s Corresponding arg is a pointer to a string for C/C++ or a fixed
length String for Visual Basic. All leading white-space characters
are ignored, all characters from the device are read into a string
until a white-space character is read. An optional field width
indicates the maximum length of the string. You should specify the
maximum field width of the buffer being used to prevent overflows.

S Corresponding arg is a pointer to a string for C/C++, or a fixed
length String for Visual Basic. This data is received as an IEEE
488.2 string response data block. The resultant string will not have
the enclosing double quotes in it. An optional field width indicates
the maximum length of the string. You should specify the
maximum field width of the buffer being used to prevent overflows.

t Corresponding arg is a pointer to a string for C/C++, or a fixed
length String for Visual Basic. Read all characters from the device
into a string until an END indicator is read. An optional field width
indicates the maximum length of the string. All characters read
beyond the maximum length are ignored until the END indicator is
received. You should specify the maximum field width of the buffer
being used to prevent overflows.
320 Chapter 11

SICL Language Reference
ISCANF
b Corresponding arg is a pointer to a buffer. This conversion code
reads an array of data from the device. The data must be in IEEE
488.2 Arbitrary Block Program Data format. Depending on the
structure of the data, data may be read until an END indicator is
read.

The field width must be present to specify the maximum number of
elements the buffer can hold. For C/C++ programs, the field width
can be a pound sign (#). If the field width is a pound sign, two
arguments are used to fulfill this conversion type.

The first argument is a pointer to a long that will be used as the
field width. The second will be the pointer to the buffer that will hold
the data. After this conversion is satisfied, the field width pointer is
assigned the number of elements read into the buffer. This is a
convenient way to determine the actual number of elements read
into the buffer.

If there is more data than will fit into the buffer, extra data is lost.

If no argument modifier is specified, the array is assumed to be an
array of bytes.

If the w argument modifier is specified, the array is assumed to be
an array of short integers (16 bits). The data read from the device
is byte swapped and padded as necessary to convert from IEEE
488.2 byte ordering (big endian) to the native ordering of the
controller. The field width is the number of words.

If the l (ell) argument modifier is specified, the array is assumed to
be an array of long integers (32 bits). The data read from the
device is byte swapped and padded as necessary to convert from
IEEE 488.2 byte ordering (big endian) to the native ordering of the
controller. The field width is the number of long words.

If the z argument modifier is specified, the array is assumed to be
an array of floats. The data read from the device is an array of 32
bit IEEE-754 floating point numbers. The field width is the number
of floats.

If the Z argument modifier is specified, the array is assumed to be
an array of doubles. The data read from the device is an array of
64 bit IEEE-754 floating point numbers. The field width is the
number of doubles.
Chapter 11 321

SICL Language Reference
ISCANF
o Corresponding arg must be a pointer to an unsigned integer for
C/C++ or an Integer for Visual Basic. The library reads characters
until the entire octal number is read.

If the l (ell) argument modifier is used, the argument must be a
pointer to an unsigned long integer for C/C++ or a Long for Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to an unsigned short integer for C/C++ or the argument
must be an Integer for Visual Basic.

u Corresponding arg must be a pointer to an unsigned integer for
C/C++ or an Integer for Visual Basic. The library reads characters
until an entire number is read. It will accept any valid decimal
number.

If the l (ell) argument modifier is used, the argument must be a
pointer to an unsigned long integer for C/C++ or a Long for Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to an unsigned short integer for C/C++ or the argument
must be an Integer for Visual Basic.

x Corresponding arg must be a pointer to an unsigned integer for
C/C++ or an Integer for Visual Basic. The library reads characters
until an entire number is read. It will accept any valid hexadecimal
number.

If the l (ell) argument modifier is used, the argument must be a
pointer to an unsigned long integer for C/C++ or a Long for Visual
Basic. If the h argument modifier is used, the argument must be a
pointer to an unsigned short integer for C/C++ or it must be an
Integer for Visual Basic.

[Corresponding arg must be a character pointer for C/C++ or a
fixed length character String for Visual Basic. The [conversion
type matches a non-empty sequence of characters from a set of
expected characters. The characters between the [and the] are
the scanlist.

The scanset is the set of characters that match the scanlist, unless
the circumflex (^) is specified. If the circumflex is specified, the
scanset is the set of characters that do not match the scanlist.
The circumflex must be the first character after the [. Otherwise,
it will be added to the scanlist.
322 Chapter 11

SICL Language Reference
ISCANF
'DWD�&RQYHUVLRQV This table lists types of data that each numeric format accepts. Conversion
types i and d and types f and e,g are not the same.

Return Value

Returns the total number of arguments converted by the format string.

See Also

IPRINTF, IPROMPTF, IFLUSH, ISETBUF, ISETUBUF, IFREAD, IFWRITE

[The - can be used to build a scanlist. It means to include all
characters between the two characters in which it appears (for
example, %[a-z] means to match all the lower case letters
between and including a and z). If the - appears at the beginning
or the end of conversion string, - is added to the scanlist.

n Corresponding arg is a pointer to an integer for C/C++, or it is an
Integer for Visual Basic. The number of bytes currently converted
from the device is placed into the arg. No argument is converted.

F Supported on HP-UX only. (Not supported on Windows 95,
Windows 98, Windows 2000, or Windows NT.) Corresponding
arg is a pointer to a FILE descriptor. The input data read from the
device is written to the file referred to by the FILE descriptor until
the END indicator is received. The file must be opened for writing.
No other modifiers or flags are valid with this conversion character.

d IEEE 488.2 HEX, OCT, BIN, and NRf formats (for example, #HA,
#Q12, #B1010, 10, 10.00, and 1.00E+01).

f IEEE 488.2 HEX, OCT, BIN, and NRf formats (for example, #HA,
#Q12, #B1010, 10, 10.00, and 1.00E+01).

i Integer. Data with a leading 0 will be converted as octal. Data with
leading 0x or 0X will be converted as hexadecimal.

u Unsigned integer. Same as i except value is unsigned.

o Unsigned integer. Data will be converted as octal.

x,X Unsigned integer. Data will be converted as hexadecimal.

e,g Floating. Integers, floating point, and exponential numbers will be
converted into floating point numbers (default is float).
Chapter 11 323

SICL Language Reference
ISERIALBREAK
ISERIALBREAK
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iserialbreak (id);
INST id;

Visual Basic Syntax
Function iserialbreak
(ByVal id As Integer)

Description

The iserialbreak function is used to send a BREAK on the interface
specified by id.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.
324 Chapter 11

SICL Language Reference
ISERIALCTRL
ISERIALCTRL
Supported sessions: . interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iserialctrl (id, request, setting);
INST id;
int request;
unsigned long setting;

Visual Basic Syntax
Function iserialctrl
(ByVal id As Integer, ByVal request As Integer,
 ByVal setting As Long)

Description

The iserialctrl function sets up the serial interface for data exchange.
This function takes request (one of the following values) and sets the
interface to the setting. The following are valid values for request:

I_SERIAL_BAUD The setting parameter will be the new speed of
the interface. The value should be a valid baud
rate for the interface (for example, 300, 1200,
9600). The baud rate is represented as an
unsigned long integer, in bits per second.

If the value is not a recognizable baud rate, an
err_param error is returned. Supported baud
rates are: 50, 110, 300, 600, 1200, 2400, 4800,
7200, 9600, 19200, 38400, and 57600.

I_SERIAL_PARITY These are acceptable values for setting:
I_SERIAL_PAR_EVEN Even parity
I_SERIAL_PAR_ODD Odd parity
I_SERIAL_PAR_NONE No parity bit is used
I_SERIAL_PAR_MARK Parity is always one
I_SERIAL_PAR_SPACE Parity is always zero
Chapter 11 325

SICL Language Reference
ISERIALCTRL
I_SERIAL_STOP Acceptable values for setting are:
I_SERIAL_STOP_1 1 stop bit
I_SERIAL_STOP_2 2 stop bits

I_SERIAL_WIDTH Acceptable values for setting are:
I_SERIAL_CHAR_5 5 bit characters
I_SERIAL_CHAR_6 6 bit characters
I_SERIAL_CHAR_7 7 bit characters
I_SERIAL_CHAR_8 8 bit characters

I_SERIAL_READ_BUFSZ Sets the size of the read buffer. The setting
parameter is used as the size of buffer to use.
This value must be in the range of 1 and 32767.

I_SERIAL_DUPLEX Acceptable values for setting are:
I_SERIAL_DUPLEX_FULL Use full duplex
I_SERIAL_DUPLEX_HALF Use half duplex

I_SERIAL_FLOW_CTRL The setting parameter must be set to one of the
following values. If no flow control is to be used,
set setting to zero (0). Supported types of flow
control are:
I_SERIAL_FLOW_NONE No handshaking
I_SERIAL_FLOW_XON Software handshaking
I_SERIAL_FLOW_RTS_CTS Hardware
handshaking
I_SERIAL_FLOW_DTR_DSR Hardware
handshaking

I_SERIAL_READ_EOI Sets the type of END Indicator to use for reads.

For iscanf to work as specified, data must be
terminated with an END indicator. The RS-232
interface has no standard way of doing this. SICL
provides two different methods of indicating EOI.

The first method is to use a character with a
value between 0 and 0xff. Whenever this value
is encountered in a read (iread, iscanf, or
ipromptf), the read will terminate and the term
reason will include I_TERM_END. The default
for serial is the newline character (\n).
326 Chapter 11

SICL Language Reference
ISERIALCTRL
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs.For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ISERIALSTAT

I_SERIAL_READ_EOI
(cont)

The second method is to use bit 7 (if numbered
0-7) of the data as the END indicator. The data
would be bits 0 through 6 and, when bit 7 is set,
means EOI. Valid values for the setting are:

n I_SERIAL_EOI_CHR|(n) - A character is
used to indicate EOI, where n is the
character. This is the default type and
\n is used.

n I_SERIAL_EOI_NONE - No EOI
indicator.

n I_SERIAL_EOI_BIT8 - Use the eighth
bit of the data to indicate EOI. On the last
byte, the eighth bit will be masked off, and
the result will be placed into the buffer.

I_SERIAL_WRITE_EOI The setting parameter will contain the value of
the type of END Indicator to use for writes. The
following are valid values:

n I_SERIAL_EOI_NONE - No EOI
indicator. This is the default for
I_SERIAL_WRITE (iprintf).

n I_SERIAL_EOI_BIT8 - Use the eighth
bit of the data to indicate EOI. On the last
byte, the eighth bit will be masked off and
the result will be placed into the buffer.

I_SERIAL_RESET This will reset the serial interface, any pending
writes will be aborted, the data in the input buffer
will be discarded, and any error conditions will be
reset. This differs from iclear in that no BREAK
will be sent.
Chapter 11 327

SICL Language Reference
ISERIALMCLCTRL
ISERIALMCLCTRL
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iserialmclctrl (id, sline, state);
INST id;
int sline;
int state;

Visual Basic Syntax
Function iserialmclctrl
(ByVal id As Integer, ByVal sline As Integer,
 ByVal state As Integer)

Description

The iserialmclctrl function is used to control the Modem Control Lines.
The sline parameter sends one of the following values:

I_SERIAL_RTS Ready To Send line
I_SERIAL_DTR Data Terminal Ready line

If the state value is non-zero, the Modem Control Line will be asserted.
Otherwise, it will be cleared.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ISERIALMCLSTAT, IONINTR, ISETINTR
328 Chapter 11

SICL Language Reference
ISERIALMCLSTAT
ISERIALMCLSTAT
Supported sessions: . interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iserialmclstat (id, sline, state);
INST id;
int sline;
int *state;

Visual Basic Syntax
Function iserialmclstat
(ByVal id As Integer, ByVal sline As Integer,
 state As Integer)

Description

The iserialmclstat function is used to determine the current state of the
Modem Control Lines. The sline parameter sends one of the following
values:

I_SERIAL_RTS Ready To Send line
I_SERIAL_DTR Data Terminal Ready line

If the value returned in state is non-zero, the Modem Control Line is
asserted. Otherwise, it is clear.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ISERIALMCLCTRL
Chapter 11 329

SICL Language Reference
ISERIALSTAT
ISERIALSTAT
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iserialstat (id, request, result);
INST id;
int request;
unsigned long *result;

Visual Basic Syntax
Function iserialstat
(ByVal id As Integer, ByVal request As Integer,
 result As Long)

Description

The iserialstat function finds the status of the serial interface. This
function takes one of the following values passed in request and returns the
status in the result parameter:

I_SERIAL_BAUD The result parameter will be set to the speed of
the interface.

I_SERIAL_PARITY The result parameter will be set to one of the
following values:
I_SERIAL_PAR_EVEN Even parity
I_SERIAL_PAR_ODD Odd parity
I_SERIAL_PAR_NONE No parity bit is used
I_SERIAL_PAR_MARK Parity is always one
I_SERIAL_PAR_SPACE Parity is always
zero

I_SERIAL_STOP The result parameter will be set to one of the
following values:
I_SERIAL_STOP_1 1stop bits
I_SERIAL_STOP_2 2 stop bits
330 Chapter 11

SICL Language Reference
ISERIALSTAT
I_SERIAL_WIDTH The result parameter will be set to one of the
following values:
I_SERIAL_CHAR_5 5 bit characters
I_SERIAL_CHAR_6 6 bit characters
I_SERIAL_CHAR_7 7 bit characters
I_SERIAL_CHAR_8 8 bit characters

I_SERIAL_DUPLEX The result parameter will be set to one of the
following values:
I_SERIAL_DUPLEX_FULL Use full duplex
I_SERIAL_DUPLEX_HALF Use half duplex

I_SERIAL_MSL The result parameter will be set to the bit-wise
OR of all of Modem Status Lines that are
currently being asserted.

The value of the result parameter will be the
logical OR of all of serial lines currently being
asserted. The serial lines are the Modem
Control Lines and the Modem Status Lines.
Supported serial lines are:

n I_SERIAL_DCD - Data Carrier Detect.
n I_SERIAL_DSR - Data Set Ready.
n I_SERIAL_CTS - Clear To Send.

n I_SERIAL_RI - Ring Indicator.
n I_SERIAL_TERI - Trailing Edge of RI.
n I_SERIAL_D_DCD - The DCD line has

changed since the last time this status
has been checked.

n I_SERIAL_D_DSR - The DSR line has
changed since the last time this status
has been checked.

n I_SERIAL_D_CTS - The CTS line has
changed since the last time this status
has been checked.
Chapter 11 331

SICL Language Reference
ISERIALSTAT
I_SERIAL_STAT This is a read destructive status, since reading
this request resets the condition. The result
parameter will be set the bit-wise OR of the
following conditions:
n I_SERIAL_DAV - Data is available.
n I_SERIAL_PARERR - Parity error

has occurred since the last time the
status was checked.

n I_SERIAL_OVERFLOW - Overflow
error has occurred since the last time
the status was checked.

n I_SERIAL_FRAMING - Framing
error has occurred since the last time
the status was checked.

n I_SERIAL_BREAK - Break has been
received since the last time the
status was checked.

n I_SERIAL_TEMT - Transmitter
empty.

I_SERIAL_READ_BUFSZ The result parameter will be set to the current
size of the read buffer.

I_SERIAL_READ_DAV The result parameter will be set to the current
amount of data available for reading.

I_SERIAL_FLOW_CTRL The result parameter will be set to the value of
the current type of flow control that the interface
is using. If no flow control is being used, result
will be set to zero (0). Supported types of flow
control are:
n I_SERIAL_FLOW_NONE No

handshaking
n I_SERIAL_FLOW_XON Software

handshaking
n I_SERIAL_FLOW_RTS_CTS

Hardware handshaking
n I_SERIAL_FLOW_DTR_DSR

Hardware handshaking
332 Chapter 11

SICL Language Reference
ISERIALSTAT
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ISERIALCTRL

I_SERIAL_READ_EOI The result parameter will be set to the value of
the current type of END indicator that is being
used for reads. These values can be returned:
n I_SERIAL_EOI_CHR|(n) - A character is

used to indicate EOI, where n is the
character. These two values are logically
OR-ed together. To find the value of the
character, AND result with 0xff. The
default is a \n.

n I_SERIAL_EOI_NONE - No EOI
indicator. This is the default for
I_SERIAL_READ (iscanf).

n I_SERIAL_EOI_BIT8 - Use the eighth
bit of the data to indicate EOI. This last
byte will mask off this bit and use the rest
for the data that is put in your buffer.

I_SERIAL_WRITE_EOI The result parameter will be set to the value of
the current type of END indicator that is being
used for reads. These values can be returned:

n I_SERIAL_EOI_NONE - No EOI
indicator. This is the default for
I_SERIAL_WRITE (iprintf).

n I_SERIAL_EOI_BIT8 - Use the eighth
bit of the data to indicate EOI. This last
byte will mask off this bit and use the rest
for the data that is put in your buffer.
Chapter 11 333

SICL Language Reference
ISETBUF
ISETBUF
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int isetbuf (id, mask, size);
INST id;
int mask;
int size;

Description

This function is not supported on Visual Basic. isetbuf sets the size and
actions of the read and/or write buffers of formatted I/O. The mask can be
one or the bit-wise OR of both of the following flags:

I_BUF_READ Specifies the read buffer.
I_BUF_WRITE Specifies the write buffer.

The size argument specifies the size of the read or write buffer (or both) in
bytes. Setting a size of zero (0) disables buffering. For write buffers, each
byte goes directly to the device. For read buffers, the driver reads each byte
directly from the device.

Setting a size greater than zero creates a buffer of the specified size. For
write buffers, the buffer flushes (writes to the device) whenever the buffer
fills up and for each newline character in the format string. (However, the
buffer is not flushed by newline characters in the argument list.) For read
buffers, the buffer is never flushed and holds any leftover data for the next
iscanf/ipromptf call. This is the default action.

Setting a size less than zero creates a buffer of the absolute value of the
specified size. For write buffers, the buffer flushes (writes to the device)
whenever the buffer fills up for each newline character in the format string or
at the completion of every iprintf call. For read buffers, the buffer flushes
(erases its contents) at the end of every iscanf (or ipromptf) function.
Calling isetbuf flushes any data in the buffer(s) specified in the mask
parameter.
334 Chapter 11

SICL Language Reference
ISETBUF
Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IPRINTF, ISCANF, IPROMPTF, IFWRITE, IFREAD, IFLUSH, ISETUBUF
Chapter 11 335

SICL Language Reference
ISETDATA
ISETDATA
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int isetdata (id, data);
INST id;
void *data;

Description

This function is not supported on Visual Basic.The isetdata function
stores a pointer to a data structure and associates it with a session (or
INST id).

You can use these user-defined data structures to associate device-specific
data with a session such as device name, configuration, instrument settings,
and so forth. The programmer is responsible for buffer management (buffer
allocation/deallocation).

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IGETDATA
336 Chapter 11

SICL Language Reference
ISETINTR
ISETINTR
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int isetintr (id, intnum, secval);
INST id;
int intnum;
long secval;

Description

This function is not supported on Visual Basic. The isetintr function
enables interrupt handling for a specified event. Installing an interrupt
handler only allows you to receive enabled interrupts. By default, all interrupt
events are disabled. The intnum parameter specifies the possible causes for
interrupts. A valid intnum value for any type of session is:

A valid intnum value for all device sessions (except GPIB and GPIO, which have
no device-specific interrupts) is:

Valid intnum values for all interface sessions are:

I_INTR_OFF Turns off all interrupt conditions previously enabled
with calls to isetintr.

I_INTR_* Individual interfaces may include other interface-
interrupt conditions. See the following information on
each interface for more details.

I_INTR_INTFACT Interrupt when the interface becomes active. Enable
if secval!=0; disable if secval=0.

I_INTR_INTFDEACT Interrupt when the interface becomes deactivated.
Enable if secval!=0; disable if secval=0.
Chapter 11 337

SICL Language Reference
ISETINTR
Valid intnum values for all commander sessions (except RS-232 and
GPIO, which do not support commander sessions) are:

,QWHUUXSWV�RQ�*3,% GPIB Device Session Interrupts. There are no device-specific interrupts for
the GPIB interface.

GPIB Interface Session Interrupts. The interface-specific interrupt for the
GPIB interface is:

Generic interrupts for the GPIB interface are:

I_INTR_TRIG Interrupt when a trigger occurs. The secval
parameter contains a bit-mask specifying which
triggers can cause an interrupt. See the ixtrig
function’s which parameter for a list of valid values.

I_INTR_* Individual interfaces may include other interface-
interrupt conditions. .

I_INTR_STB Interrupt when the commander reads the status byte
from this controller. Enable if secval!=0; disable if
secval=0.

I_INTR_DEVCLR Interrupt when the commander sends a device clear
to this controller (on the given interface). Enable if
secval!=0; disable if secval=0.

I_INTR_GPIB_IFC Interrupt when an interface clear occurs. Enable
when secval!=0 and disable when secval=0. This
interrupt will be generated whether or not this
interface is the system controller or not. That is,
regardless of whether this interface generated the
IFC or another device on the interface generated the
IFC.

I_INTR_INTFACT Interrupt occurs whenever this controller becomes
the active controller.

I_INTR_INTFDEACT Interrupt occurs whenever this controller passes
control to another GPIB device. (For example, the
igpibpassctl function has been called.)
338 Chapter 11

SICL Language Reference
ISETINTR
GPIB Commander Session Interrupts. These are commander-specific
interrupts for GPIB:

I_INTR_GPIB_PPOLLCONFIG This interrupt occurs whenever there is a
change to the PPOLL configuration. This
interrupt is enabled using isetintr by
specifying a secval greater than 0. If
secval=0, this interrupt is disabled.

I_INTR_GPIB_REMLOC This interrupt occurs whenever a remote
or local message is received and
addressed to listen. This interrupt is
enabled using isetintr by specifying a
secval greater than 0. If secval=0, this
interrupt is disabled.

I_INTR_GPIB_GET This interrupt occurs whenever the GET
message is received and addressed to
listen. This interrupt is enabled using
isetintr by specifying a secval greater
than 0. If secval=0, this interrupt is
disabled.

I_INTR_GPIB_TLAC This interrupt occurs whenever this device
has been addressed to talk or untalk, or
the device has been addressed to listen
or unlisten. This interrupt is enabled using
isetintr by specifying a secval greater than
0. If secval=0, this interrupt is disabled.

When the interrupt handler is called, the
secval value is set to a bit mask. Bit 0 is
for listen, and bit 1 is for talk. If:
n Bit 0 = 1, this device is addressed

to listen.
n Bit 0 = 0, this device is not

addressed to listen.
n Bit 1 = 1, this device is addressed

to talk.
n Bit 1 = 0, this device is not

addressed to talk.
Chapter 11 339

SICL Language Reference
ISETINTR
,QWHUUXSWV�RQ�*3,2 GPIO Device Session Interrupts. GPIO does not support device sessions.
Therefore, there are no device session interrupts for GPIO.

GPIO Interface Session Interrupts. The GPIO interface is always active.
Therefore, the interrupts for I_INTR_INTFACT and I_INTR_INTFDEACT
will never occur. Interface-specific interrupts for the GPIO interface are:

GPIO Commander Session Interrupts. GPIO does not support commander
sessions. Therefore, there are no commander session interrupts for GPIO.

,QWHUUXSWV�RQ�
56������6HULDO�

RS-232 Device Session Interrupts. The device-specific interrupt for the RS-
232 interface is:

RS-232 Interface Session Interrupts. The interface-specific interrupts for the
RS-232 interface are:

I_INTR_GPIO_EIR This interrupt occurs whenever the EIR line is asserted
by the peripheral device. Enabled when secval!=0,
disabled when secval=0.

I_INTR_GPIO_RDY This interrupt occurs whenever the interface becomes
ready for the next handshake. (The exact meaning of
“ready” depends on the configured handshake mode.)
Enabled when secval!=0, disabled when secval=0.

I_INTR_SERIAL_DAV This interrupt occurs whenever the receive buffer in
the driver goes from the empty to the non-empty
state.

I_INTR_SERIAL_MSL The status lines that can cause this interrupt are
DCD, CTS, DSR, and RI. This interrupt occurs
whenever one of the specified modem status lines
changes states.

The secval argument in ionintr is the logical
OR of the Modem Status Lines to monitor. In the
interrupt handler, the sec argument will be the
logical OR of the MSL line(s) that caused the
interrupt handler to be invoked.
340 Chapter 11

SICL Language Reference
ISETINTR
These are the generic interrupts for the RS-232 interface:

RS-232 Commander Session Interrupts. RS-232 does not support
commander sessions. Therefore, there are no commander session
interrupts for RS-232.

I_INTR_SERIAL_MSL
(cont)

Most implementations of the ring indicator
interrupt only deliver the interrupt when the state
goes from high to low (a trailing edge). This differs
from other MSLs in that it is not just a state change
that causes the interrupts.

I_INTR_SERIAL_BREAK This interrupt occurs whenever a BREAK is
received.

I_INTR_SERIAL_ERROR This interrupt occurs whenever a parity, overflow,
or framing error happens. The secval argument in
ionintr is the logical OR of one or more of the
following values to enable the appropriate
interrupt.

In the interrupt handler, the sec argument will be
the logical OR of these values that indicate which
error(s) occurred:

n I_SERIAL_PARERR - Parity Error
n I_SERIAL_OVERFLOW- Buffer

Overflow Error
n I_SERIAL_FRAMING - Framing Error

I_INTR_SERIAL_DAV This interrupt occurs whenever the receive
buffer in the driver goes from the empty to the
non-empty state.

I_INTR_SERIAL_TEMT This interrupt occurs whenever the transmit
buffer in the driver goes from the non-empty
to the empty state.

I_INTR_INTFACT This interrupt occurs when the Data Carrier Detect
(DCD) line is asserted.

I_INTR_INTFDEACT This interrupt occurs when the Data Carrier Detect
(DCD) line is cleared.
Chapter 11 341

SICL Language Reference
ISETINTR
,QWHUUXSWV�RQ�9;, VXI Device Session Interrupts. The device-specific interrupt for the VXI
interface is:

VXI Interface Session Interrupts. These are interface-specific interrupts for
the VXI interface:

I_INTR_VXI_SIGNAL A specified device wrote to the VXI signal register (or
a VME interrupt arrived from a VXI device that is in the
servant list), and the signal was an event you defined.
This interrupt is enabled using isetintr by
specifying a secval!=0. If secval=0, this is disabled.
The value written into the signal register is returned in
the secval parameter of the interrupt handler.

I_INTR_VXI_SYSRESET A VXI SYSRESET occurred. This interrupt is
enabled using isetintr by specifying a
secval!=0. If secval=0, this is disabled.

I_INTR_VXI_VME A VME interrupt occurred from a non-VXI
device, or a VXI device that is not a servant of
this interface. This interrupt is enabled using
isetintr by specifying a secval!=0. If
secval=0, this is disabled.

I_INTR_VXI_UKNSIG A write to the VXI signal register was performed
by a device that is not a servant of this
controller. This interrupt condition is enabled
using isetintr by specifying a secval!=0.
If secval=0, this is disabled. The value written
into the signal register is returned in the secval
parameter of the interrupt handler.

I_INTR_VXI_VMESYSFAIL The VME SYSFAIL line has been asserted.

I_INTR_VME_IRQ1 VME IRQ1 has been asserted.

I_INTR_VME_IRQ2 VME IRQ2 has been asserted.

I_INTR_VME_IRQ3 VME IRQ3 has been asserted.

I_INTR_VME_IRQ4 VME IRQ4 has been asserted.

I_INTR_VME_IRQ5 VME IRQ5 has been asserted.

I_INTR_VME_IRQ6 VME IRQ6 has been asserted.

I_INTR_VME_IRQ7 VME IRQ7 has been asserted.
342 Chapter 11

SICL Language Reference
ISETINTR
Generic interrupts for the VXI interface are:

VXI Commander Session Interrupts. The commander-specific interrupt for
VXI is:

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IONINTR, IGETONINTR, IWAITHDLR, IINTROFF, IINTRON, IXTRIG and
“Asynchronous Events and HP-UX Signals” in the Agilent SICL User’s Guide
for HP-UX for protecting I/O calls against interrupts.

I_INTR_INTFACT This interrupt occurs whenever the interface receives a
BNO (Begin Normal Operation) message.

I_INTR_INTFDEACT This interrupt occurs whenever the interface receives
an ANO (Abort Normal Operation) or ENO (End
Normal Operation) message.

I_INTR_VXI_LLOCK A lock/clear lock word-serial command has arrived.
This interrupt is enabled using isetintr by
specifying a secval!=0. If secval=0, this is disabled. If a
lock occurred, the secval in the handler is passed a 1;
if an unlock, the secval in the handler is passed 0.
Chapter 11 343

SICL Language Reference
ISETLOCKWAIT
ISETLOCKWAIT
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int isetlockwait (id, flag);
INST id;
int flag;

Visual Basic Syntax
Function isetlockwait
(ByVal id As Integer, ByVal flag As Integer)

Description

The isetlockwait function determines whether library functions wait for a
device to become unlocked or return an error when attempting to operate on
a locked device. The error returned is I_ERR_LOCKED.

If flag is non-zero, all operations on a device or interface locked by another
session will wait for the lock to be removed. This is the default case.

If flag is zero (0), all operations on a device or interface locked by another
session will return an error (I_ERR_LOCKED). This will disable the timeout
value set up by the itimeout function.

If a request is made that cannot be granted due to hardware constraints, the
process will “hang” until the desired resources become available. To avoid
this, use the isetlockwait command with the flag parameter set to 0
and thus generate an error instead of waiting for the resources to become
available.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ILOCK, IUNLOCK, IGETLOCKWAIT
344 Chapter 11

SICL Language Reference
ISETSTB
ISETSTB
Supported sessions: . commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int isetstb (id, stb);
INST id;
unsigned char stb;

Visual Basic Syntax
Function isetstb
(ByVal id As Integer, ByVal stb As Byte)

Description

The isetstb function allows the status byte value for this controller to be
changed. This function is only valid for commander sessions. Bit 6 in the
stb (status byte) has special meaning. If bit 6 is set, an SRQ notification is
given to the remote controller, if its identity is known. If bit 6 is not set, the
SRQ notification is canceled. The exact mechanism for sending the SRQ
notification is dependent on the interface.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IREADSTB, IONSRQ
Chapter 11 345

SICL Language Reference
ISETUBUF
ISETUBUF
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int isetubuf (id, mask, size, buf);
INST id;
int mask;
int size;
char *buf;

Description

This function is not supported on Visual Basic. The isetubuf function
supplies the buffer(s) used for formatted I/O. With this function you can
specify the size and the address of the formatted I/O buffer. This function
sets the size and actions of the read and/or write buffers of formatted I/O.
The mask may be one, but not both, of the following flags:

Setting a size greater than zero creates a buffer of the specified size.
For write buffers, the buffer flushes (writes to the device) whenever the
buffer fills up and for each newline character in the format string. For read
buffers, the buffer is never flushed (that is, it holds any leftover data for the
next iscanf/ipromptf call). This is the default action.

Setting a size less than zero creates a buffer of the absolute value of the
specified size. For write buffers, the buffer flushes (writes to the device)
whenever the buffer fills up, for each newline character in the format string,
or at the completion of every iprintf call. For read buffers, the buffer
flushes (erases its contents) at the end of every iscanf (or ipromptf)
function. Calling isetubuf flushes the buffer specified in the mask
parameter.

I_BUF_READ Specifies the read buffer.

I_BUF_WRITE Specifies the write buffer.
346 Chapter 11

SICL Language Reference
ISETUBUF
Once a buffer is allocated to isetubuf, do not use the buffer for any other
use. In addition, once a buffer is allocated to isetubuf (either for a read or
write buffer), don’t use the same buffer for any other session or for the
opposite type of buffer on the same session (write or read, respectively).

To free a buffer allocated to a session, make a call to isetbuf which will
cause the user-defined buffer to be replaced by a system-defined buffer
allocated for this session. The user-defined buffer may then be either re-
used, or freed by the program.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IPRINTF, ISCANF, IPROMPTF, IFWRITE, IFREAD, ISETBUF, IFLUSH
Chapter 11 347

SICL Language Reference
ISWAP
ISWAP
C Syntax

#include <sicl.h>

int iswap (addr, length, datasize);
int ibeswap (addr, length, datasize);
int ileswap (addr, length, datasize);
char *addr;
unsigned long length;
int datasize;

Visual Basic Syntax
Function iswap
(ByVal addr As Long, ByVal length As Long,
 ByVal datasize As Integer)

Function ibeswap
(ByVal addr As Long, ByVal length As Long,
 ByVal datasize As Integer)

Function ileswap
(ByVal addr As Long, ByVal length As Long,
 ByVal datasize As Integer)

Description

These functions provide an architecture-independent way of byte swapping
data received from a remote device or data that is to be sent to a remote
device. This data may be received/sent using the iwrite/iread calls, or
the ifwrite/ifread calls. The iswap function will always swap the data.
These functions do not depend on a SICL session id. Therefore, they may
be used to perform non-SICL related task (namely, file I/O).

The ibeswap function assumes the data is in big-endian byte ordering (big-
endian byte ordering is where the most significant byte of data is stored at
the least significant address) and converts the data to whatever byte
ordering is native on this controller’s architecture. Or it takes the data that is
byte ordered for this controller’s architecture and converts the data to big-
endian byte ordering. (Notice that these two conversions are identical.)
348 Chapter 11

SICL Language Reference
ISWAP
The ileswap function assumes the data is in little-endian byte ordering
(little-endian byte ordering is where the most significant byte of data is
stored at the most significant address) and converts the data to whatever
byte ordering is native on this controller’s architecture. Or, it takes the data
that is byte ordered for this controller’s architecture and converts the data to
little-endian byte ordering. (These two conversions are identical.)

Depending on the native byte ordering of the controller in use (either little-
endian, or big-endian), that either the ibeswap or ileswap functions will
always be a no-op and the other will always swap bytes, as appropriate.
In all three functions, the addr parameter specifies a pointer to the data.
The length parameter provides the length of the data in bytes.

The datasize must be one of the values 1, 2, 4, or 8. datasize specifies the
size of the data in bytes and the size of the byte swapping to perform. 1 =
byte data and no swapping is performed, 2 = 16-bit word data and bytes are
swapped on word boundaries, 4 = 32-bit longword data and bytes are
swapped on longword boundaries, or 8 = 64-bit data and bytes are swapped
on 8-byte boundaries.

The length parameter must be an integer multiple of datasize. If not,
unexpected results will occur. IEEE 488.2 specifies the default data transfer
format to transfer data in big-endian format. Non-488.2 devices may send
data in either big-endian or little-endian format. The following constants are
available for use by your application to determine which byte ordering is
native to this controller’s architecture.

These constants may be used in #if or #ifdef statements to determine
the byte ordering requirements of this controller’s architecture. This
information can then be used with the known byte ordering of the devices
being used to determine the swapping that needs to be performed.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IPOKE, IPEEK, ISCANF, IPRINTF

I_ORDER_LE Defined if the native controller is little-endian.

I_ORDER_BE Defined if the native controller is big-endian.
Chapter 11 349

SICL Language Reference
ITERMCHR
ITERMCHR
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int itermchr (id, tchr);
INST id;
int tchr;

Visual Basic Syntax
Function itermchr
(ByVal id As Integer, ByVal tchr As Integer)

Description

By default, a successful iread only terminates when it reads bufsize
number of characters, or it reads a byte with the END indicator. The
itermchr function defines a termination character condition.

The tchr argument is the character specifying the termination character. If
tchr is between 0 and 255, iread terminates when it reads the specified
character. If tchr is -1, no termination character exists, and any previous
termination character is removed.

Calling itermchr affects all further calls to iread and ifread until you
make another call to itermchr. The default termination character is -1,
meaning no termination character is defined. The iscanf function
terminates reading on an END indicator or the termination chqaracter
specified by itermchr.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IREAD, IFREAD, IGETTERMCHR
350 Chapter 11

SICL Language Reference
ITIMEOUT
ITIMEOUT
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int itimeout (id, tval);
INST id;
long tval;

Visual Basic Syntax
Function itimeout
(ByVal id As Integer, ByVal tval As Long)

Description

The itimeout function is used to set the maximum time to wait for an
I/O operation to complete. In this function, tval defines the timeout in
milliseconds. A value of zero (0) disables timeouts.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IGETTIMEOUT

NOTE

Not all computer systems can guarantee an accuracy of one millisecond
on timeouts. Some computer clock systems only provide a resolution of
1/50th or 1/60th of a second. Other computers have a resolution of only
1 second. The time value is always rounded up to the next unit of
resolution.
Chapter 11 351

SICL Language Reference
ITRIGGER
ITRIGGER
Supported sessions: . device, interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int itrigger (id);
INST id;

Visual Basic Syntax
Function itrigger
(ByVal id As Integer)

Description

The itrigger function sends a trigger to a device.

7ULJJHUV�RQ�*3,% GPIB Device Session Triggers. The itrigger function performs an
addressed GPIB group execute trigger (GET).

GPIB Interface Session Triggers. The itrigger function performs an
unaddressed GPIB group execute trigger (GET). The itrigger command
on a GPIB interface session should be used in conjunction with
igpibsendcmd.

7ULJJHUV�RQ�*3,2 GPIO Interface Session Triggers. The itrigger function performs the
same function as calling ixtrig with the I_TRIG_STD value passed to it.
itrigger pulses the CTL0 control line.

7ULJJHUV�RQ�56�����
�6HULDO�

RS-232 Device Session Triggers. The itrigger function sends the 488.2
*TRG\n command to the serial device.

RS-232 Interface Session Triggers. The itrigger function performs the
same function as calling ixtrig with the I_TRIG_STD value passed to it.
itrigger pulses the DTR modem control line.
352 Chapter 11

SICL Language Reference
ITRIGGER
9;,�7ULJJHUV VXI Device Session Triggers. The itrigger function sends a word-serial
trigger command to the specified device. The itrigger function is only
supported on message-based device sessions with VXI.

VXI Interface Session Triggers. The itrigger function performs the same
function as calling ixtrig with the I_TRIG_STD value passed to it.
itrigger causes one or more VXI trigger lines to fire. Trigger lines fired
are determined by the ivxitrigroute function.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IXTRIG and the interface-specific chapter in this manual for more
information on trigger actions.
Chapter 11 353

SICL Language Reference
IUNLOCK
IUNLOCK
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int iunlock (id);
INST id;

Visual Basic Syntax
Function iunlock
(ByVal id As Integer)

Description

The iunlock function unlocks a device or interface that has been
previously locked. If you attempt to perform an operation on a device or
interface that is locked by another session the call will “hang” until the
device or interface is unlocked.

Calls to ilock/iunlock may be nested, meaning that there must be an
equal number of unlocks for each lock. Calling the iunlock function may
not actually unlock a device or interface again. For example, see how the
following C code locks and unlocks devices:

ilock(id); /* Device locked */
iunlock(id); /* Device unlocked */

ilock(id); /* Device locked */
ilock(id); /* Device locked */
iunlock(id); /* Device still locked */

iunlock(id); /* Device unlocked */

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ILOCK, ISETLOCKWAIT, IGETLOCKWAIT
354 Chapter 11

SICL Language Reference
IUNMAP
IUNMAP
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int iunmap (id, addr, map_space, pagestart, pagecnt);
INST id;
char *addr;
int map_space;
unsigned int pagestart;
unsigned int pagecnt;

Visual Basic Syntax
Function iunmap
(ByVal id As Integer, ByVal addr As Long,
 ByVal mapspace As Integer,
 ByVal pagestart As Integer,
 ByVal pagecnt As Integer)

Description

This function is not recommended for new program development. Use
IUNMAPX instead. The function is not supported over LAN. The iunmap
function unmaps a mapped memory space. The id specifies a VXI interface
or device session. The addr argument contains the address value returned
from the imap call.

The pagestart argument indicates the page within the given memory space
where the memory mapping starts. The pagecnt argument indicates how
many pages to free. The map_space argument contains the following legal
values:

I_MAP_A16 Map in VXI A16 address space.

I_MAP_A24 Map in VXI A24 address space.

I_MAP_A32 Map in VXI A32 address space.

I_MAP_VXIDEV Map in VXI device registers. (Device session only.)
Chapter 11 355

SICL Language Reference
IUNMAP
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IMAP

I_MAP_EXTEND Map in VXI A16 address space. (Device session only.)

I_MAP_SHARED Map in VXI A24/A32 memory that is physically located on
this device (sometimes called local shared memory).
356 Chapter 11

SICL Language Reference
IUNMAPX
IUNMAPX
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int iunmapx (id, handle, mapspace, pagestart, pagecnt);
INST id;
unsigned long handle;
int mapspace;
unsigned int pagestart;
unsigned int pagecnt;

Visual Basic Syntax
Function iunmap
(ByVal id As Integer, ByVal addr As Long,
 ByVal mapspace As Integer,
 ByVal pagestart As Integer,
 ByVal pagecnt As Integer)

Description

This function is not supported over LAN. The iunmapx function unmaps a
mapped memory space. The id specifies a VXI interface or device session.
The addr argument contains the address value returned from the imap call.
The pagestart argument indicates the page within the given memory space
where the memory mapping starts. The pagecnt argument indicates how
many pages to free. The map_space argument contains the following legal
values:

I_MAP_A16 Map in VXI A16 address space.

I_MAP_A24 Map in VXI A24 address space.

I_MAP_A32 Map in VXI A32 address space.

I_MAP_VXIDEV Map in VXI device registers. (Device session only.)

I_MAP_EXTEND Map in VXI A16 address space. (Device session only.)

I_MAP_SHARED Map in VXI A24/A32 memory that is physically located on
this device (sometimes called local shared memory).
Chapter 11 357

SICL Language Reference
IUNMAPX
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IMAPX
358 Chapter 11

SICL Language Reference
IVERSION
IVERSION
C Syntax

#include <sicl.h>

int iversion (siclversion, implversion);
int *siclversion;
int *implversion;

Visual Basic Syntax
Function iversion
(ByVal id As Integer, siclversion As Integer,
 implversion As Integer)

Description

The iversion function stores in siclversion the current SICL revision
number times ten that the application is currently linked with. The SICL
version number is a constant defined in sicl.h for C and in SICL.BAS
or SICL4.BAS for Visual Basic as I_SICL_REVISION. This function
stores in implversion an implementation specific revision number (the
version number of this implementation of the SICL library).

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.
Chapter 11 359

SICL Language Reference
IVXIBUSSTATUS
IVXIBUSSTATUS
Supported sessions: .interface

C Syntax
#include <sicl.h>

int ivxibusstatus (id, request, result);
INST id;
int request;
unsigned long *result;

Visual Basic Syntax
Function ivxibusstatus
(ByVal id As Integer, ByVal request As Integer,
 result As Long)

Description

The ivxibusstatus function returns the status of the VXI interface. This
function takes one of the following parameters in the request parameter and
returns the status in the result parameter.

I_VXI_BUS_TRIGGER Returns a bit-mask corresponding to the
trigger lines which are currently being
driven active by a device on the VXI bus.

I_VXI_BUS_LADDR Returns the logical address of the VXI
interface (viewed as a device on the VXI
bus).

I_VXI_BUS_SERVANT_AREA Returns the servant area size of this
device.

I_VXI_BUS_NORMOP Returns 1 if in normal operation and a
0 otherwise.

I_VXI_BUS_CMDR_LADDR Returns logical address of this device’s
commander, or -1 if no commander is
present (either this device is the top level
commander or normal operation has not
been established).
360 Chapter 11

SICL Language Reference
IVXIBUSSTATUS
I_VXI_BUS_MAN_ID Returns the manufacturer’s ID of this
device.

I_VXI_BUS_MODEL_ID Returns the model ID of this device.

I_VXI_BUS_PROTOCOL Returns the value stored in this device’s
protocol register.

I_VXI_BUS_XPROT Returns the value that this device will use
to respond to a read protocol word-serial
command.

I_VXI_BUS_SHM_SIZE Returns the size of VXI memory available
on this device. For A24 memory, this value
represents 256 byte pages. For A32
memory, this value represents 64 Kbyte
pages. Interpret as an unsigned integer for
this command.

I_VXI_BUS_SHM_ADDR_SPACE Returns either 24 or 32 depending on
whether the device’s VXI memory is
located in A24 or A32 memory space.

I_VXI_BUS_SHM_PAGE Returns the location of the device’s VXI
memory. For A24 memory, the result is in
256 byte pages. For A32 memory, the
result is in 64 Kbyte pages.
Chapter 11 361

SICL Language Reference
IVXIBUSSTATUS
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IVXITRIGON, IVXITRIGOFF

I_VXI_BUS_VXIMXI Returns 0 if device is a VXI device.
Returns 1 if device is a MXI device.

I_VXI_BUS_TRIGSUPP Returns a numeric value indicating which
triggers are supported. The numeric value
is the sum of the following values:

I_TRIG_STD 0x0000001L
I_TRIG_ALL 0xffffffffL
I_TRIG_TTL0 0x00001000L
I_TRIG_TTL1 0x00002000L
I_TRIG_TTL2 0x00004000L
I_TRIG_TTL3 0x00008000L
I_TRIG_TTL4 0x00010000L
I_TRIG_TTL5 0x00020000L
I_TRIG_TTL6 0x00040000L
I_TRIG_TTL7 0x00080000L
I_TRIG_ECL0 0x00100000L
I_TRIG_ECL1 0x00200000L
I_TRIG_ECL2 0x00400000L
I_TRIG_ECL3 0x00800000L
I_TRIG_EXT0 0x01000000L
I_TRIG_EXT1 0x00200000L
I_TRIG_EXT2 0x00400000L
I_TRIG_EXT3 0x00800000L
I_TRIG_CLK0 0x10000000L
I_TRIG_CLK1 0x20000000L
I_TRIG_CLK2 0x40000000L
I_TRIG_CLK10 0x80000000L
I_TRIG_CLK100 0x00000800L
I_TRIG_SERIAL_DTR 0x00000400L
I_TRIG_SERIAL_RTS 0x00000200L
I_TRIG_GPIO_CTL0 0x00000100L
I_TRIG_GPIO_CTL1 0x00000080L
362 Chapter 11

SICL Language Reference
IVXIGETTRIGROUTE
IVXIGETTRIGROUTE
Supported sessions: . interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ivxigettrigroute (id, which, route);
INST id;
unsigned long which;
unsigned long *route;

Visual Basic Syntax
Function ivxigettrigroute
(ByVal id As Integer, ByVal which As Long,
 route As Long)

Description

The ivxigettrigroute function returns in route the current routing of the
which parameter. See the ivxitrigroute function for more details on
routing and the meaning of route.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IVXITRIGON, IVXITRIGOFF, IVXITRIGROUTE, IXTRIG
Chapter 11 363

SICL Language Reference
IVXIRMINFO
IVXIRMINFO
Supported sessions: device, interface, commander

C Syntax
#include <sicl.h>

int ivxirminfo (id, laddr, info);
INST id;
int laddr;
struct vxiinfo *info;

Visual Basic Syntax
Function ivxirminfo
(ByVal id As Integer, ByVal laddr As Integer,
 info As vxiinfo)

Description

The ivxirminfo function returns information about a VXI device from the
VXI Resource Manager. The id is the INST for any open VXI session. The
laddr parameter contains the logical address of the VXI device.

The info parameter points to a structure of type struct vxiinfo. The
function fills in the structure with the relevant data. The structure struct
vxiinfo (defined in the file sicl.h) is listed on the following pages. This
static data is set up by the VXI resource manager.

vxiinfo�VWUXFWXUH�
�&�3URJUDPV�

For C programs, the vxiinfo structure has the following syntax:

struct vxiinfo {
/* Device Identification */
short laddr; /* Logical Address */
char name[16]; /* Symbolic Name (primary) */
char manuf_name[16]; /* Manufacturer Name */
char model_name[16]; /* Model Name */
unsigned short man_id; /* Manufacturer ID */
unsigned short model; /* Model Number */
unsigned short devclass; /* Device Class */

/* Self Test Status */
short selftest; /* 1=PASSED 0=FAILED */
364 Chapter 11

SICL Language Reference
IVXIRMINFO
/* Location of Device */
short cage_num; /* Card Cage Number */
short slot; /* Slot #, -1 is unknown, -2 is MXI */
/* Device Information */
unsigned short protocol; /* Value of protocol register

*/
unsigned short x_protocol;/* Value from Read Protocol

command */
unsigned short servant_area;/* Value of servant area */

/* Memory Information */
/* page size is 256 bytes for A24 and 64K bytes for

A32*/
unsigned short addrspace;/* 24=A24, 32=A32, 0=none */
unsigned short memsize;/* Amount of memory in pages */
unsigned short memstart;/* Start of memory in pages */

/* Misc. Information */
short slot0_laddr; /* LU of slot 0 device, -1 if unknown

*/
short cmdr_laddr; /* LU of commander, -1 if top level*/

/* Interrupt Information */
short int_handler[8]; /* List of interrupt handlers */
short interrupter[8]; /* List of interrupters */
short file[10]; /* Unused */

}

Y[LLQIR�VWUXFWXUH�
�9LVXDO�%DVLF�
3URJUDPV�

For Visual Basic programs, the vxiinfo structure has the following syntax:

Type vxiinfo
laddr As Integer
name As String * 16
manuf_name As String * 16
model_name As String * 16
man_id As Integer
model As Integer
devclass As Integer
selftest As Integer
cage_num As Integer
slot As Integer
protocol As Integer
x_protocol As Integer
servant_area As Integer
Chapter 11 365

SICL Language Reference
IVXIRMINFO
addrspace As Integer
memsize As Integer
memstart As Integer
slot0_laddr As Integer
cmdr_laddr As Integer
int_handler(0 To 7) As Integer
interrupter(0 To 7) As Integer
fill(0 To 9) As Integer

End Type

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

See the platform-specific manual for Resource Manager information.
366 Chapter 11

SICL Language Reference
IVXISERVANTS
IVXISERVANTS
Supported sessions: . interface

C Syntax
#include <sicl.h>

int ivxiservants (id, maxnum, list);
INST id;
int maxnum;
int *list;

Visual Basic Syntax
Function ivxiservants
(ByVal id As Integer, ByVal maxnum As Integer,
 list() As Integer)

Description

The ivxiservants function returns a list of VXI servants. This function
returns the first maxnum servants of this controller. The list parameter points
to an array of integers that holds at least maxnum integers. This function fills
in the array from beginning to end with the list of active VXI servants. All
unneeded elements of the array are filled with -1.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.
Chapter 11 367

SICL Language Reference
IVXITRIGOFF
IVXITRIGOFF
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ivxitrigoff (id, which);
INST id;
unsigned long which;

Visual Basic Syntax
Function ivxitrigoff
(ByVal id As Integer, ByVal which As Long)

Description

The ivxitrigoff function de-asserts trigger lines and leaves them
deactivated. The which parameter uses all of the same values as the
ixtrig command, as shown. Any combination of values may be used in
which by performing a bit-wise OR of the desired values. To fire trigger lines
(assert, then de-assert the lines), use ixtrig instead of ivxitrigon and
ivxitrigoff.

I_TRIG_ALL All standard triggers for this interface (bitwise OR of all
valid triggers)

I_TRIG_TTL0 TTL Trigger Line 0

I_TRIG_TTL1 TTL Trigger Line 1

I_TRIG_TTL2 TTL Trigger Line 2

I_TRIG_TTL3 TTL Trigger Line 3

I_TRIG_TTL4 TTL Trigger Line 4

I_TRIG_TTL5 TTL Trigger Line 5

I_TRIG_TTL6 TTL Trigger Line 6

I_TRIG_TTL7 TTL Trigger Line 7

I_TRIG_ECL0 ECL Trigger Line 0
368 Chapter 11

SICL Language Reference
IVXITRIGOFF
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IVXITRIGON, IVXITRIGROUTE, IVXIGETTRIGROUTE, IXTRIG

I_TRIG_ECL1 ECL Trigger Line 1

I_TRIG_ECL2 ECL Trigger Line 2

I_TRIG_ECL3 ECL Trigger Line 3

I_TRIG_EXT0 External BNC or SMB Trigger Connector 0

I_TRIG_EXT1 External BNC or SMB Trigger Connector 1
Chapter 11 369

SICL Language Reference
IVXITRIGON
IVXITRIGON
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h”
int ivxitrigon (id, which);
INST id;
unsigned long which;

Visual Basic Syntax
Function ivxitrigon
(ByVal id As Integer, ByVal which As Long)

Description

The ivxitrigon function asserts trigger lines and leaves them activated.
The which parameter uses the same values as the ixtrig command. Any
combination of values may be used in which by performing a bit-wise OR of
the desired values.

I_TRIG_ALL All standard triggers for this interface (bitwise OR of all
valid triggers)

I_TRIG_TTL0 TTL Trigger Line 0

I_TRIG_TTL1 TTL Trigger Line 1

I_TRIG_TTL2 TTL Trigger Line 2

I_TRIG_TTL3 TTL Trigger Line 3

I_TRIG_TTL4 TTL Trigger Line 4

I_TRIG_TTL5 TTL Trigger Line 5

I_TRIG_TTL6 TTL Trigger Line 6

I_TRIG_TTL7 TTL Trigger Line 7

I_TRIG_ECL0 ECL Trigger Line 0

I_TRIG_ECL1 ECL Trigger Line 1

I_TRIG_ECL2 ECL Trigger Line 2
370 Chapter 11

SICL Language Reference
IVXITRIGON
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IVXITRIGOFF, IVXITRIGROUTE, IVXIGETTRIGROUTE, IXTRIG

I_TRIG_ECL3 ECL Trigger Line 3

I_TRIG_EXT0 External BNC or SMB Trigger Connector 0

I_TRIG_EXT1 External BNC or SMB Trigger Connector 1
Chapter 11 371

SICL Language Reference
IVXITRIGROUTE
IVXITRIGROUTE
Supported sessions: .interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ivxitrigroute (id, in_which, out_which);
INST id;
unsigned long in_which;
unsigned long out_which;

Visual Basic Syntax
Function ivxitrigroute
(ByVal id As Integer, ByVal in_which As Long,
 ByVal out_which As Long)

Description

The ivxitrigroute function routes VXI trigger lines. With some VXI
interfaces, it is possible to route one trigger input to several trigger outputs.
The in_which parameter may contain only one of the valid trigger values.
The out_which may contain zero, one, or several of the following valid
trigger values listed.

I_TRIG_ALL All standard triggers for this interface (bit-wise OR of all
valid triggers) (out_which ONLY)

I_TRIG_TTL0 TTL Trigger Line 0

I_TRIG_TTL1 TTL Trigger Line 1

I_TRIG_TTL2 TTL Trigger Line 2

I_TRIG_TTL3 TTL Trigger Line 3

I_TRIG_TTL4 TTL Trigger Line 4

I_TRIG_TTL5 TTL Trigger Line 5

I_TRIG_TTL6 TTL Trigger Line 6

I_TRIG_TTL7 TTL Trigger Line 7
372 Chapter 11

SICL Language Reference
IVXITRIGROUTE
The in_which parameter may also contain:

This function routes the trigger line in the in_which parameter to the trigger
lines contained in the out_which parameter. In other words, when the line
contained in in_which fires, all of the lines contained in out_which are also
fired. For example, thhis command causes EXT0 to fire whenever TTL3
fires:

ivxitrigroute(id, I_TRIG_TTL3, I_TRIG_EXT0);

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IVXITRIGON, IVXITRIGOFF, IVXIGETTRIGROUTE, IXTRIG

I_TRIG_ECL0 ECL Trigger Line 0

I_TRIG_ECL1 ECL Trigger Line 1

I_TRIG_ECL2 ECL Trigger Line 2

I_TRIG_ECL3 ECL Trigger Line 3

I_TRIG_EXT0 External BNC or SMB Trigger Connector 0

I_TRIG_EXT1 External BNC or SMB Trigger Connector 1

I_TRIG_CLK0 Internal clocks provided by the controller (implementation-
specific)

I_TRIG_CLK1 Internal clocks provided by the controller (implementation-
specific)

I_TRIG_CLK2 Internal clocks provided by the controller (implementation-
specific)
Chapter 11 373

SICL Language Reference
IVXIWAITNORMOP
IVXIWAITNORMOP
Supported sessions: device, interface, commander
Affected by functions: . itimeout

C Syntax
#include <sicl.h>

int ivxiwaitnormop (id);
INST id;

Visual Basic Syntax
Function ivxiwaitnormop
(ByVal id As Integer)

Description

The ivxiwaitnormop function suspends the process until the interface or
device is active (establishes normal operation). See the iwaithdlr
function for other methods of waiting for an interface to become ready to
operate.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IWAITHDLR, IONINTR, ISETINTR, ICLEAR
374 Chapter 11

SICL Language Reference
IVXIWS
IVXIWS
Supported sessions: .device
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ivxiws(id,wscmd,wsresp,rpe);
INST id;
unsigned short wscmd;
unsigned short *wsresp;
unsigned short *rpe;

Visual Basic Syntax
Function ivxiws
(ByVal id As Integer, ByVal wscmd As Integer,
 wsresp As Integer, rpe As Integer)

Description

The ivxiws function sends a word-serial command to a VXI message-
based device. The wscmd contains the word-serial command. If wsresp
contains zero (0), this function does not read a word-serial response.
If wsresp is non-zero, the function reads a word-serial response and stores
it in that location.

If ivxiws executes successfully, rpe does not contain valid data. If the
word-serial command errors, rpe contains the Read Protocol Error
response, the ivxiws function returns I_ERR_IO, and the wsresp
parameter contains invalid data.

The ivxiws function will always try to read the response data if the wsresp
parameter is non-zero. If you send a word serial command that does not
return response data and the wsresp argument is non-zero, this function will
“hang” or timeout (see itimeout) waiting for the response.
Chapter 11 375

SICL Language Reference
IVXIWS
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ITIMEOUT
376 Chapter 11

SICL Language Reference
IWAITHDLR
IWAITHDLR
C Syntax

#include <sicl.h>

int iwaithdlr (timeout);
long timeout;

Description

This function is not supported on Visual Basic. The iwaithdlr function
causes the process to suspend until an enabled SRQ or interrupt condition
occurs and the related handler executes. Once the handler completes its
operation, this function returns and processing continues.

If timeout is non-zero, iwaithdlr terminates and generates an error if no
handler executes before the given time expires. If timeout is zero,
iwaithdlr waits indefinitely for the handler to execute. Specify timeout
in milliseconds.

The iwaithdlr function will implicitly enable interrupts. If you have called
iintroff, iwaithdlr will re-enable interrupts and disable them again
before returning.

Interrupts should be disabled with iintroffif iwaithdlr is used. The
reason for disabling interrupts is that a race condition exists between the
isetintr and iwaithdlr. Thus, if you only expect one interrupt, it might
come before iwaithdlr executes. Interrupts will still be disabled after the
iwaithdlr function has completed. For example:

... iintroff ();
ionintr (hpib, act_isr);
isetintr (hpib, I_INTR_INTFACT, 1);
...
igpibpassctl (hpib, ba);

NOTE

Not all computer systems can guarantee an accuracy of one millisecond
on timeouts. Some computer clock systems only provide a resolution of
1/50th or 1/60th of a second. Other computers have a resolution of only
1 second. The time value is always rounded up to the next unit of
resolution.
Chapter 11 377

SICL Language Reference
IWAITHDLR
iwaithdlr (0);
iintron ();
...

In a multi-threaded application, iwaithdlr will enable interrupts for the
whole process. If two threads call iintroff and one of them then calls
iwaithdlr, interrupts will be enabled and both threads can receive
interrupt events. This is not a defect, since the application must handle
enabling/disabling of interrupts and keep track of when all threads are
ready to receive interrupts.

Return Value

This function returns zero (0) if successful or a non-zero error number if an
error occurs.

See Also

IONINTR, IGETONINTR, IONSRQ, IGETONSRQ, IINTROFF, IINTRON
378 Chapter 11

SICL Language Reference
IWRITE
IWRITE
Supported sessions: device, interface, commander
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int iwrite (id, buf, datalen, endi, actualcnt);
INST id;
char *buf;
unsigned long datalen;
int endi;
unsigned long *actualcnt;

Visual Basic Syntax
Function iwrite
(ByVal id As Integer, ByVal buf As String,
 ByVal datalen As Long, ByVal endi As Integer,
 actual As Long)

Description

The iwrite function sends a block of data to an interface or device.
This function writes the data specified in buf to the session specified in id.
The buf argument is a pointer to the data to send to the specified interface
or device. The datalen argument is an unsigned long integer containing the
length of the data block in bytes.

If the endi argument is non-zero, this function will send the END indicator
with the last byte of the data block. Otherwise, if endi is set to zero, no END
indicator will be sent.

The actualcnt argument is a pointer to an unsigned long integer which, upon
exit, will contain the actual number of bytes written to the specified interface
or device. A NULL pointer can be passed for this argument and no value will
be written. To pass a NULL actualcnt parameter to iwrite in Visual Basic,
pass the expression 0&.

For LAN, if the client times out prior to the server, the actualcnt returned will
be 0, even though the server may have written some data to the device or
interface.
Chapter 11 379

SICL Language Reference
IWRITE
Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

IREAD, IFREAD, IFWRITE
380 Chapter 11

SICL Language Reference
IXTRIG
IXTRIG
Supported sessions: . interface
Affected by functions: . ilock, itimeout

C Syntax
#include <sicl.h>

int ixtrig (id, which);
INST id;
unsigned long which;

Visual Basic Syntax
Function ixtrig
(ByVal id As Integer, ByVal which As Long)

Description

The ixtrig function sends an extended trigger to an interface. The which
argument can be:

I_TRIG_STD Standard trigger operation for all interfaces.
I_TRIG_STD operation depends on the specific
interface as shown in the following subsections.

I_TRIG_ALL All standard triggers for this interface (bit-wise OR of all
supported triggers).

I_TRIG_TTL0 TTL Trigger Line 0

I_TRIG_TTL1 TTL Trigger Line 1

I_TRIG_TTL2 TTL Trigger Line 2

I_TRIG_TTL3 TTL Trigger Line 3

I_TRIG_TTL4 TTL Trigger Line 4

I_TRIG_TTL5 TTL Trigger Line 5

I_TRIG_TTL6 TTL Trigger Line 6

I_TRIG_TTL7 TTL Trigger Line 7

I_TRIG_ECL0 ECL Trigger Line 0
Chapter 11 381

SICL Language Reference
IXTRIG
7ULJJHUV�RQ�*3,% When used on a GPIB interface session, passing the I_TRIG_STD value to
the ixtrig function causes an unaddressed GPIB group execute trigger
(GET). The ixtrig command on a GPIB interface session should be used
in conjunction with the igpibsendcmd. There are no other valid values for
the ixtrig function.

7ULJJHUV�RQ�*3,2 The ixtrig function will pulse either the CTL0 or CTL1 control line. The
following values can be used:

7ULJJHUV�RQ�56�����
�6HULDO�

The ixtrig function will pulse either the DTR or RTS modem control lines.
The following values can be used:

I_TRIG_ECL1 ECL Trigger Line 1

I_TRIG_ECL2 ECL Trigger Line 2

I_TRIG_ECL3 ECL Trigger Line 3

I_TRIG_EXT0 External BNC or SMB Trigger Connector 0

I_TRIG_EXT1 External BNC or SMB Trigger Connector 1

I_TRIG_EXT2 External BNC or SMB Trigger Connector 2

I_TRIG_EXT3 External BNC or SMB Trigger Connector 3

I_TRIG_STD CTL0

I_TRIG_GPIO_CTL0 CTL0

I_TRIG_GPIO_CTL1 CTL1

I_TRIG_STD Data Terminal Ready (DTR)

I_TRIG_SERIAL_DTR Data Terminal Ready (DTR)

I_TRIG_SERIAL_RTS Ready To Send (RTS)
382 Chapter 11

SICL Language Reference
IXTRIG
7ULJJHUV�RQ�9;, When used on a VXI interface session, passing the I_TRIG_STD value
to the ixtrig function causes one or more VXI trigger lines to fire. The
trigger lines fired are determined by the ivxitrigroute function. The
I_TRIG_STD value has no default value. If I_TRIG_STD is not defined
before it is used, no action will be taken.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.

See Also

ITRIGGER, IVXITRIGON, IVXITRIGOFF
Chapter 11 383

SICL Language Reference
_SICLCLEANUP
_SICLCLEANUP
C Syntax

#include <sicl.h>

int _siclcleanup(void);

Visual Basic Syntax
Function siclcleanup () As Integer

Description

Visual Basic programs call this routine without the initial underscore (_).
This routine is called when a program is finished with all SICL I/O resources.
Calling this routine is not required on Windows 95, Windows 98, Windows
2000, Windows NT, or HP-UX.

Return Value

For C programs, this function returns zero (0) if successful or a non-zero
error number if an error occurs. For Visual Basic programs, no error number
is returned. Instead, the global Err variable is set if an error occurs.
384 Chapter 11

A

SICL System Information
385

SICL System Information

This appendix provides information on SICL software files and system
interaction in Windows 95, Windows 98, Windows 2000, and Windows NT.
This information can be used as a reference for removing SICL from a
system, if necessary.
386 Appendix A

SICL System Information
Windows 95/Windows 98
Windows 95/Windows 98

File Location

All SICL files are installed in the base directory specified by the person who
installs SICL, with the exception of several common files that Windows must
be able to locate. On Windows 95 and Windows 98, the following files are
copied to the Windows subdirectory.

Windows 95

Windows

Inf
 gpio.inf
 hpib.inf
 wn1394.inf

System
 ag341i32.vxd
 ag350i32.vxd
 hpioclas.dll
 sicl32.dll
 siclrpc.dll
 siclut16.dll
 siclut17.dll
 siclut31.dll
 vbsicl32.dll
 wn1394.vxd
 wnpapi32.dll

Windows

Inf
 1394ipt.inf
 gpio.inf
 hpib.inf

System
 ag341i32.vxd
 ag350i32.vxd
 hpioclas.dll
 sicl32.dll
 siclrpc.dll
 siclut16.dll
 siclut17.dll
 siclut31.dll
 vbsicl32.dll

System32
 1394ipt.dll

 Drivers
1394ipt.sys

Windows 98
Appendix A 387

SICL System Information
Windows 95/Windows 98
The Registry

SICL places the following key in the Windows 95 or Windows 98 registry
under HKEY_LOCAL_MACHINE:

Software\Agilent\IO Libraries\CurrentVersion

Also, if the LAN Server is configured, the following key will be created under
HKEY_LOCAL_MACHINE if it did not previously exist:

Software\Microsoft\Windows\CurrentVersion\RunServices

SICL Configuration Information

SICL configuration information is stored in the Windows 95 or
Windows 98 registry under the
Software\Agilent\IO Libraries\CurrentVersion
branch under HKEY_LOCAL_MACHINE.
388 Appendix A

SICL System Information
Windows NT/Windows 2000
Windows NT/Windows 2000

File Location

All SICL files are installed in the base directory specified by the person who
installs SICL, with the exception of several common files that Windows must
be able to locate. On Windows NT and Windows 2000, the following files are
copied to the Windows subdirectory.

Windows NT 4.0

Winnt

System32
 sicl32.dll
 siclrpc.dll
 vbsicl32.dll
 wnpapi32.dll

 Drivers
ag074i32.sys
ag34i32.sys
ag350i32.sys
wn1394.sys

Winnt

Inf
 1394ipt.inf
 agtgpib.inf
 agtgpio.inf

System32
 1394ipt.dll
 agtgpibclass.dll
 sicl32.dll
 siclrpc.dll
 vbsicl32.dll

 Drivers
1394ipt.sys
ag074i32.sys
ag341i32.sys
ag350i32.sys
agt82341.sys
agt82350.sys
agte2050.sys

Windows 2000
Appendix A 389

SICL System Information
Windows NT/Windows 2000
The Registry

SICL places the following keys in the Windows NT registry under
HKEY_LOCAL_MACHINE:

n Software\Agilent\IO Libraries\CurrentVersion
n System\CurrentControlSet\Control\GroupOrderList
n System\CurrentControlSet\Control\ServiceOrderList
n System\CurrentControlSet\Services\hp341i32
n System\CurrentControlSet\Services\EventLog\

Application\SICL Log
n System\CurrentControlSet\Services\EventLog\System\

hp341i32

SICL Configuration Information

SICL configuration information is stored in the Windows NT or Windows
2000 registry under the
Software\Agilent\IO Libraries\CurrentVersion
branch under HKEY_LOCAL_MACHINE.
390 Appendix A

B

Porting to Visual Basic
391

Porting to Visual Basic

This edition of this manual shows how to program SICL applications in
Visual Basic version 4.0 or later. For SICL applications written in an earlier
Visual Basic version than version 4.0 (for example, version 3.0), you can
port your SICL applications to Visual Basic version 4.0 or later.

Porting SICL applications to Visual Basic 4.0 or later is a matter of adding
the SICL4.BAS declaration file (rather than the SICL.BAS file) to each
project that calls SICL for Visual Basic 4.0 or later programs. There may
also be changes in functions when passing null pointers for strings to SICL
functions. For example, in Visual Basic version 3.0, the preceding ByVal
keyword was used as follows:

ivprintf(id, mystring, ByVal 0&)

In Visual Basic version 4.0 or later, you only need to pass the 0& null pointer
because version 4.0 or later knows this is by reference:

ivprintf(id, mystring, 0&)

Once you have added the SICL4.BAS declaration file to each project and
removed ByVal keywords preceding null pointers for strings, your SICL
applications will run correctly with Visual Basic 4.0 or later.
392 Appendix B

C

 SICL Error Codes
393

SICL Error Codes

Error Code Error String Description

I_ERR_ABORTED Externally aborted A SICL call was aborted by external means.

I_ERR_BADADDR Bad address The device/interface address passed to iopen
does not exist. Verify that the interface name
is the one assigned in the I/O Setup utility
(hwconfig.cf file) for HP-UX or with the IO
Config utility for Windows.

I_ERR_BADCONFIG Invalid configuration An invalid configuration was identified when
calling iopen.

I_ERR_BADFMT Invalid format Invalid format string specified for iprintf or
iscanf.

I_ERR_BADID Invalid INST The specified INST !!id!! does not have a
corresponding iopen.

I_ERR_BADMAP Invalid map request The imap call has an invalid map request.

I_ERR_BUSY Interface is in use by
non-SICL process

The specified interface is busy.

I_ERR_DATA Data integrity violation CRC, Checksum, etc. imply invalid data.

I_ERR_INTERNAL Internal error occurred SICL internal error.

I_ERR_INTERRUPT Process interrupt occurred A process interrupt (signal) has occurred in
your application.

I_ERR_INVLADDR Invalid address The address specified in iopen is not a valid
address (for example, ”hpib,57”).

I_ERR_IO Generic I/O error I/O error occurred for this communication
session.

I_ERR_LOCKED Locked by another user Resource is locked by another session
(see isetlockwait).

I_ERR_NESTEDIO Nested I/O Attempt to call another SICL function when
current SICL function has not completed.
More than one I/O operation is prohibited.

I_ERR_NOCMDR Commander session is not
active or available

Tried to specify a commander session when it
is not active, available, or does not exist.
394 Appendix C

SICL Error Codes
I_ERR_NOCONN No connection Communication session has never been
established, or connection to remote has been
dropped.

I_ERR_NODEV Device is not active or
available

Tried to specify a device session when it is not
active, available, or does not exist.

I_ERR_NOERROR No Error No SICL error returned. Function return value
is zero (0).

I_ERR_NOINTF Interface is not active Tried to specify an interface session when it is
not active, available, or does not exist.

I_ERR_NOLOCK Interface not locked An iunlock was specified when device was
not locked.

I_ERR_NOPERM Permission denied Access rights violated.

I_ERR_NORSRC Out of resources No more system resources available.

I_ERR_NOTIMPL Operation not implemented Call not supported on this implementation.
The request is valid, but not supported on
this implementation.

I_ERR_NOTSUPP Operation not supported Operation not supported on this
implementation.

I_ERR_OS Generic O.S. error SICL encountered an operating system error.

I_ERR_OVERFLOW Arithmetic overflow Arithmetic overflow. The space allocated for
data may be smaller than the data read.

I_ERR_PARAM Invalid parameter The constant or parameter passed is not valid
for this call.

I_ERR_SYMNAME Invalid symbolic name Symbolic name passed to iopen not
recognized.

I_ERR_SYNTAX Syntax error Syntax error occurred parsing address passed
to iopen. Make sure that you have formatted
the string properly. White space is not allowed.

I_ERR_TIMEOUT Timeout occured A timeout occurred on the read/write operation.
The device may be busy, in a bad state, or you
may need a longer timeout value for that
device. Check also that you passed the
correct address to iopen.

I_ERR_VERSION Version incompatibility The iopen call has encountered a SICL library
that is newer than the drivers. Need to update
drivers.

Error Code Error String Description
Appendix C 395

SICL Error Codes
Notes:
396 Appendix C

D

SICL Function Summary
397

SICL Function Summary

The following tables summarize supported features for each SICL function.
The first table lists the core (interface-independent) SICL functions that
apply to all types of devices and interfaces. The tables after that list the
interface-specific SICL functions (SICL functions specific to GPIB, GPIO,
LAN, RS-232/Serial, and VXI interfaces, respectively).

Each table shows if the SICL function supports device (DEV), interface
(INTF), and/or commander (CMDR) session(s) and/or is affected by the
ilock (LOCK) and/or the itimeout (TIMEOUT) function(s).

Also, the tables titled “Core SICL Functions” and “VXI SICL Functions” have
the additional column, LAN CLIENT TIMEOUT. SICL functions with Xs in this
column may timeout over LAN, even those functions that cannot timeout
over local interfaces.

Core SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT LAN CLIENT
TIMEOUT

IABORT

IBLOCKCOPY

ICAUSEERR X X X

ICLEAR X X X X X

ICLOSE X X X X

IFLUSH X X X X X X

IFREAD X X X X X X

IFWRITE X X X X X X

IGETADDR X X X

IGETDATA X X X

IGETDEVADDR X

IGETERRNO

IGETERRSTR

IGETINTFSESS X X X
398 Appendix D

SICL Function Summary
IGETINTFTYPE X X X

IGETLOCKWAIT X X X

IGETLU X X X

IGETLUINFO

IGETLULIST

IGETONERROR X X X

IGETONINTR X X X

IGETONSRQ X X

IGETSESSTYPE X X X

IGETTERMCHR X X X

IGETTIMEOUT X X X

IHINT X X X

IINTROFF

IINTRON

ILOCAL X X X X

ILOCK X X X X X

IONERROR

IONINTR X X X X

IONSRQ X X X

IOPEN X X X X

IPOPFIFO

IPRINTF X X X X X X

IPROMPTF X X X X X X

IPUSHFIFO

IREAD X X X X X X

IREADSTB X X X X

IREMOTE X X X X

Core SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT LAN CLIENT
TIMEOUT
Appendix D 399

SICL Function Summary

ISCANF X X X X X X

ISETBUF X X X X

ISETDATA X X X

ISETINTR X X X X

ISETLOCKWAIT X X X

ISETSTB X X X X

ISETUBUF X X X X

ISWAP

ITERMCHR X X X

ITIMEOUT X X X

ITRIGGER X X X X X

IUNLOCK X X X X

IVERSION X

IWAITHDLR

IWRITE X X X X X X

IXTRIG X X X X

GPIB SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT

IGPIBATNCTL X X X

IGPIBBUSADDR X X X

IGPIBBUSSTATUS X X X

IGPIBGETT1DELAY X X X

IGPIBLLO X X X

IGPIBPASSCTL X X X

IGPIBPPOLL X X X

Core SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT LAN CLIENT
TIMEOUT
400 Appendix D

SICL Function Summary

IGPIBPPOLLCONFIG X X X X

IGPIBPPOLLRESP X X X

IGPIBRENCTL X X X

IGPIBSENDCMD X X X

IGPIBSETT1DELAY X X X

GPIO SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT

IGPIOCTRL X X X

IGPIOGETWIDTH X

IGPIOSETWIDTH X X X

IGPIOSTAT X

LAN SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT

IGETGATEWAYTYPE X X X

ILANGETTIMEOUT X

ILANTIMEOOUT X

GPIB SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT
Appendix D 401

SICL Function Summary
RS-232/Serial SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT

ISERIALBREAK X X X

ISERIALCTRL X X X

ISERIALMCLCTRL X X X

ISERIALMCLSTAT X X X

ISERIALSTAT X X X

VXI SICL Functions

Function DEV INTF CMDR LOCK TIMEOUT LAN CLIENT
TIMEOUT

IMAP X X X X X

IMAPINFO X X X

IPEEK

IPOKE

IUNMAP X X X

IVXIBUSSTATUS X X X X

IVXIGETTRIGROUTE X X X X

IVXIRMINFO X X X X

IVXISERVANTS X X

IVXITRIGOFF X X X X

IVXITRIGON X X X X

IVXITRIGROUTE X X X X

IVXIWAITNORMOP X X X X X

IVXIWS X X X X
402 Appendix D

E

RS-232 Cables
403

RS-232 Cables

This appendix lists several general purpose RS-232 cables and adapters.
Consult your instrument’s operating manual for information on the status
lines used for handshaking.
404 Appendix E

RS-232 Cables
Cable/Adapter Part Numbers
Cable/Adapter Part Numbers
In the following table, recommended cables and adapters are shown in
boldface type. Other cables are listed since they may work better than the
recommended cable/adapter in some applications. In the table, “a” and “b”
are defined as:

n [a] One of four adapters in the 34399A RS-232 Adapter Kit. Kit
includes four adapters to go from DB9 Female Cable (34398A)
to PC/Printer DB25 Male or Female, or to modem DB9 Female
or DB25 Female.

n [b] Part of 34398A RS-232 Cable Kit. Kit comes with RS-232, 9-pin
Female to 9-pin Female Null modem/printer cable and one
adapter 9-pin Male to 25-pin Female (part number 5181-6641).
The adapter is also located in the 34399A RS-232 Adapter Kit.

Instrument
Connector

Computer/Printer
Connector

Cable
Part Number

Adapter Part
Number

Length

9-Pin Male 25-Pin Male 24542H
24542U
F1047-80002 [b]

none
5181-6641 [a]
5181-6641 [a]

3m (9ft 10in)
3m (9ft 10in)
2.5m (8ft 2.5in)

9-Pin Male 25-Pin Female 24542G
24542U
F1047-80002 [b]

none
5181-6640 [a]
5181-6640 [a]

3m (9ft 10in)
3m (9ft 10in)
2.5m (8ft 2.5in)

9-Pin Male 9-Pin Male 24542U
24542H & 24542M
F1047-80002 [b]

none
none
none

3m (9ft 10in)
6m (19ft 10in)
2.5m (8ft 2.5in)

9-Pin Male 25-Pin Female 24542M
24542U
F1047-80002 [b]

none
5181-6642 [a]
5181-6642 [a]

3m (9ft 10in)
3m (9ft 10in)
2.5m (8ft 2.5in)

9-Pin Male 9-Pin Female 24542U
F1047-80002 [b]

5181-6639 [a]
5181-6639 [a]

3m (9ft 10in)
2.5m (8ft 2.5in)

25-Pin Female 25-Pin Female 24542G 5181-6642 [a] 3m (9ft 10in)

25-Pin Female 9-Pin Female 24542G
24542M

5181-6639 [a]
none

3m (9ft 10in)
3m (9ft 10in)

25-Pin Female 25-Pin Male 17255D
C2913A
24542G

none
none
5181-6641 [a]

1.2m (3ft 11in)
1.2m (3ft 11in)
3m (9ft 10in)
Appendix E 405

RS-232 Cables
Cable/Adapter Part Numbers
25-Pin Female 25-Pin Female 13242G
17255M
C2914A
24542G

none
none
none
5181-6640 [a]

5m (16ft 8in)
1.5m (4ft 11in)
1.2m (3ft 11in)
3m (9ft 10in)

25-Pin Female 9-Pin Male 24542G
24542U
F1047-80002 [b]

none
5181-6640 [a]
5181-6640 [a]

3m (9ft 10in)
3m (9ft 10in)
2.5m (8ft 2.5in)

Instrument
Connector

Computer/Printer
Connector

Cable
Part Number

Adapter Part
Number

Length
406 Appendix E

RS-232 Cables
Cable/Adapter Pinouts
Cable/Adapter Pinouts

Instrument 92219J Cable PC

TX
RX
RTS
CTS
DSR
GND
DTR

TX
RX
RTS
CTS
DSR
GND
DTR

 DB25 DB25 DB25 DB25
 Female Male Female Male

1
2
3
4
5
6
7
20

1
2
3
4
5
6
7
20

NOTE: The 92219J is directional. This cable may work
 differently when swapped end-to-end.

Instrument 13242G Cable PC/Printer

TX
RX
RTS
CTS
DSR
GND
CD
SCD

SRTS
DTR

Shield
TX
RX
CD
DTR

GND
RTS
SRTS

SCD
CTS
DSR

 DB25 DB25 DB25 DB25
 Female Male Male Female

1
2
3
4
5
6
7
8
12
11
19
20

1
2
3
8
20

7
4
19
11
12
5
6

Appendix E 407

RS-232 Cables
Cable/Adapter Pinouts
Instrument 24542U Cable PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9
 Male Female Female Male

1
2
3
4
5
6
7
8
9

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

Instrument F1047-80002 Cable PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9
 Male Female Female Male

1
2
3
4
5
6
7
8
9

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

408 Appendix E

RS-232 Cables
Cable/Adapter Pinouts
Instrument 24542G/H Cable PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

24542H DB9 DB9 DB25 DB25
 Male Female Female Male

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

2
3
4
5
6
7
8
20

24542G DB9 DB9 DB25 DB25
 Male Female Male Female

Instrument 24542M Modem Cable Modem

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB25 DB25
 Male Female Male Female

1
2
3
4
5
6
7
8
9

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

8
3
2
20
7
6
4
5
22
Appendix E 409

RS-232 Cables
Cable/Adapter Pinouts
Instrument C2913A/C2914A Cable PC

TX
RX
RTS
CTS
DSR
GND
DTR

C2913A DB25 DB25 DB25 DB25
 Female Male Female Male

1
2
3
4
5
6
7
20

TX
RX
RTS
CTS
DSR
GND
DTR

1
2
3
4
5
6
7
20

C21914A DB25 DB25 DB25 DB25
 Female Male Male Female

Instrument Typical Mouse Adapter PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB25 DB25
 Female Male Female Male

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR
RI

2
3
4
5
6
7
8
20
22

A mouse adapter works well as a 9-pin to 25-pin adapter with a PC.
410 Appendix E

RS-232 Cables
Cable/Adapter Pinouts
Instrument F1047-80002 Cable 5181-6641 Adapter (Black) PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Female Male

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20

Instrument F1047-80002 Cable 5181-6640 Adapter (White) PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Male Female

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20

Instrument F1047-80002 Cable 5181-6642 Adapter (Gray) PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Male Female

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR
RI

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20
22
Appendix E 411

RS-232 Cables
Cable/Adapter Pinouts
Instrument F1047-80002 Cable 5181-6639 Adapter (Black) Modem

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB9 DB9
 Male Female Female Male Male Female

1
2
3
4
5
6
7
8
9

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Instrument 24542U Cable 5181-6641 Adapter (Black) PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Female Male

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20

Instrument 24542U Cable 5181-6640 Adapter (White) PC/Printer

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Female Male

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20
412 Appendix E

RS-232 Cables
Cable/Adapter Pinouts
Instrument 24542U Cable 5181-6642 Adapter (Gray) Modem

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Female Male

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR
RI

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20
22

Instrument 24542U Cable 5181-6639 Adapter (Black) Modem

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB9 DB9
 Male Female Female Male Male Female

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Appendix E 413

RS-232 Cables
Cable/Adapter Pinouts
Notes:
414 Appendix E

Glossary
415

Glossary

address
A string uniquely identifying a particular interface or a device on that
interface.

bus error
An action that occurs when access to a given address fails either
because no register exists at the given address, or the register at the
address refuses to respond.

bus error handler
Programming code executed when a bus error occurs.

commander session
A session that communicates to the controller of this bus.

controller
A computer used to communicate with a remote device such as an
instrument. In the communications between the controller and the device
the controller is in charge of, and controls the flow of communication (that
is, does the addressing and/or other bus management).

controller role
A computer acting as a controller communicating with a device.

device
A unit that receives commands from a controller. Typically a device is an
instrument but could also be a computer acting in a non-controller role, or
another peripheral such as a printer or plotter.

device driver
A segment of software code that communicates with a device. It may
either communicate directly with a device by reading and writing
registers, or it may communicate through an interface driver.

device session
A session that communicates as a controller specifically with a single
device, such as an instrument.
416 Glossary

handler
A software routine used to respond to an asynchronous event such as an
error or an interrupt.

instrument
A device that accepts commands and performs a test or measurement
function.

interface
A connection and communication media between devices and
controllers, including mechanical, electrical, and protocol connections.

interface driver
A software segment that communicates with an interface. It also handles
commands used to perform communications on an interface.

interface session
A session that communicates and controls parameters affecting an entire
interface.

interrupt
An asynchronous event requiring attention out of the normal flow of
control of a program.

lock
A state that prohibits other users from accessing a resource, such as a
device or interface.

logical unit
A logical unit is a number associated with an interface. In SICL, a logical
unit uniquely identifies an interface. Each interface on the controller must
have a unique logical unit.

mapping
An operation that returns a pointer to a specified section of an address
space as well as makes the specified range of addresses accessible to
the requester.

non-controller role
A computer acting as a device communicating with a controller.
Glossary 417

process
An operating system object containing one or more threads of execution
that share a data space. A multi-process system is a computer system
that allows multiple programs to execute simultaneously, each in a
separate process environment. A single-process system is a computer
system that allows only a single program to execute at a given point in
time.

register
An address location that controls or monitors hardware.

session
An instance of a communications channel with a device, interface, or
commander. A session is established when the channel is opened with
the iopen function and is closed with a corresponding call to iclose.

SRQ
Service Request. An asynchronous request (an interrupt) from a remote
device indicating that the device requires servicing.

status byte
A byte of information returned from a remote device showing the current
state and status of the device.

symbolic name
A name corresponding to a single interface or device. This name
uniquely identifies the interface or device on this controller. If there is
more than one interface or device on the controller, each interface or
device must have a unique symbolic name.

thread
An operating system object that consists of a flow of control within a
process. A single process may have multiple threads that each have
access to the same data space within the process. However, each thread
has its own stack and all threads may execute concurrently with each
other (either on multiple processors, or by time-sharing a single
processor). Multi-threaded applications are only supported with 32-bit
SICL.
418 Glossary

Index

Symbols

$(conlibsdll), 180
$(cvarsdll), 180
$(guilibsdll), 180
*RST, 20
*STB?, 142
*TRG, 142
_siclcleanup, 20, 384

A
Addressing

device sessions, 32
VXI devices, 106

Agilent, telephone numbers, 10
Agilent IO Libraries Control, 32
Asynchronous Events

disabling/enabling, 56
handling, 55

B
Borland Compilers, using, 22, 29
Buffers, formatted I/O, 42, 51
Building a SICL Application, 27
Byte ordering

big-endian, 258
little-endian, 349

C
C Applications

compiling and linking, 28
formatted I/O, 35
libraries and DLLs, 27

Chr$(10), Chr$(13), 50
Command module, 105
Commander session, 31
Common LAN problems, 184
Compiled SCPI (C-SCPI), 105
Copyright information, 8

D
Device sessions, addressing, 32
Disabling asynchronous events, 56
DMA, 264

E
END, 326
Error handlers

event viewer, 58
message viewer, 58
using in C, 59
using in Visual Basic, 62

Errors, handling, 58
Event Viewer, 58, 177, 182
Examples

creating commander session,
34
error handlers (Visual Basic), 63
formatted i/o (C), 40
formatted i/o (Visual Basic), 49
GPIB device session (C), 74
GPIB device session (Visual
Basic), 76
GPIB interface session (C), 80
GPIB interface session (Visual
Basic), 81
GPIO interface session (C), 96
GPIO interface session (Visual
Basic), 97
GPIO interrupts, 98
installng an error handler (C), 60
iscpi device session, 112
LAN-gatewayed session (C),
163
LAN-gatewayed session (Visual
Basic), 165
locking (C), 66
locking (Visual Basic), 67
non-formatted i/o (C), 52
non-formatted i/o (Visual Basic),
54
419

opening a device session, 33
opening an interface session,
34
oscillosope program (C), 191
oscillosope program (Visual
Basic), 199
processing VME interrupts (C),
132
program code (IDN), 17
RS-232 device session (C), 143
RS-232 device session (Visual
Basic), 144
RS-232 interface session
(Visual Basic), 150
servicing multiple SRQs (C), 86
VME interrupts (C), 121
VXI interface session (C), 118
VXI interrupt actions (C), 131
VXI memory i/o (C), 128
VXI message-based device
session (C), 107
VXI register-based
programming (C), 115
writing an error handler (C), 61

F
Formatted I/O, 35

buffers, 51, 42
conversion, 36, 45
functions, 43
related (Visual Basic),44, 51

G
Gateway, 156
Getting Started, 16, 23
GPIB

addresses, 72
communications sessions, 71
device sessions, 72, 73
interface sessions, 79
interrupts, 84
interrupt handlers, 85

multiple interrupts, 85
service requests, 79
SICL function support, 84
using, 83
VXI connections, 72

GPIO
bad parameter error, 183
common problems, 182
no device error, 183
opn not supported error, 183
communications sessions, 91
interface sessions, 94, 95
SICL Function Support, 94, 95

H
Handlers, SRQ, 56
Handling asynchronous events, 55
Handling errors, 58

I
iprintf format string, 41
I/O commands, sending, 35
i?peek, 113
i?poke, 113
iblockcopy, 207
iblockmovex, 209
icauseerr, 211
iclear, 163, 168, 212
iclose, 20, 55, 213
iderefptr, 214
IDN program, 21, 22
iflush, 41, 50, 215
ifread, 36, 217
ifwrite, 36, 219
igetaddr, 221
igetdata, 222
igetdevaddr, 162, 223
igeterrno, 30, 224
igeterrstr, 177, 225
igetgatewaytype, 159, 226
igetintfsess, 169, 182, 195, 227
igetintftype, 162, 228
420

igetlockwait, 229
igetlu, 230
igetluinfo, 168, 231
igetlulist, 233
igetonerror, 234
igetonintr, 235
igetonsrq, 236
igetsesstype, 162, 237
igettermchr, 238
igettimeout, 239
igpibatnctl, 195, 240
igpibbusaddr, 241
igpibbusstatus, 242
igpibgett1delay, 244
igpibllo, 245
igpibpassctl, 246
igpibppoll, 247
igpibppollconfig, 248
igpibppollresp, 249
igpibrenctl, 250
igpibsendcmd, 31, 195, 251
igpibsett1delay, 252
igpioctrl, 91, 253
igpiogetwidth, 92, 257
igpiosetwidth, 92, 258
igpiostat, 93, 260
ihint, 263
iintroff, 56, 197, 265
iintron, 56, 197, 266
ilangettimeout, 159, 171, 267
ilantimeout, 159, 171, 268
ilocal, 271
ilock, 30, 64, 169–170, 272
imap, 105, 113, 125, 275
imapinfo, 113, 281
imapx, 278
instrument, definition, 110
instserv, 165
interface session, 31

Interpreted SCPI
addressing rules, 110
device sessions, interrupts, 125
programming, 105, 111

Interrupt handlers, 56
Interrupts, 55
IO Config, 19, 32, 72, 78, 83, 94, 106
ionerror, 30, 59–60, 177, 283
ionintr, 55–56, 168, 286
ionsrq, 55–56, 125, 168, 196–197,

288
iopen, 31–32, 61, 72, 110, 158, 165
ipeek, 105, 125, 291
ipeekx16, 292
ipeekx32, 292
ipeekx8, 292
ipoke, 105, 293
ipokex16, 294
ipokex32, 294
ipokex8, 294
ipopfifo, 295
iprintf, 20, 35, 41, 111, 180, 297
ipromptf, 20, 35, 42, 307
ipushfifo, 308
iread, 35, 52, 169, 310
ireadstb, 56, 74, 86, 111, 125, 312
iremote, 163, 313
iscanf, 20, 35, 42, 86, 111, 314
iscpi, 105
iserialbreak, 140, 324
iserialctrl, 138, 142, 148, 325
iserialmclctrl, 140, 328
iserialmclstat, 140, 329
iserialstat, 139, 148, 330
isetbuf, 42, 334
isetdata, 336
isetintr, 56, 84, 95, 131, 142, 146,

337
isetlockwait, 113, 344
421

isetstb, 345
isetubuf, 42, 346
isscanf, 27
iswap, 348
itermchr, 350
itimeout, 171, 174, 180, 351
itrigger, 352
iunlock, 30, 64, 169, 354
iunmap, 355
iunmapx, 357
iversion, 359
ivprintf, 44, 51
ivprintf Format String, 50
ivscanf, 44, 50–51
ivxibusstatus, 360
ivxigettrigroute, 363
ivxirminfo, 364
ivxiservants, 367
ivxitrigoff, 368
ivxitrigon, 370
ivxitrigroute, 372
ivxiwaitnormop, 374
ivxiws, 125, 375
iwaithdlr, 57, 377
iwaithndlr, 197
iwrite, 35, 52, 169, 379
ixtrig, 381

L
LAN

application terminations and
timeouts, 174
client/server model, 155
clients and threads, 158
default timeout values, 172
gateway, 156
hardware architecture, 155
ip addresses, 160
networking protocols, 157
servers, 159

SICL configuration and
performance, 159
SICL LAN protocol, 157
software architecture, 157
TCP/IP instrument protocol, 157
timeout functions, 171
timeouts, multi-threaded
applications, 173
using locks and threads, 169
using the ping utility, 184
using the rpcinfo utility, 185
using timeouts, 171

LAN interface sessions, 167
LAN-gatewayed sessions, 160
lf, 49
Little-endian byte ordering, 349
Lock actions, 65
Locking, multi-user environment, 65
Locks, using, 64
Logging SICL error messages, 58

M
Message Viewer, 58, 177, 182
Message-based devices, 105
Multiple GPIB instruments, handling

SRQs, 85

N
Non-Formatted I/O, 52

O
On error, 62
Opening a communications session,

31

P
Peeks and pokes, 105
Porting to Visual Basic, 392
Printing history, 8
422

R
Register-based devices, 105
Restricted rights, 7
RS-232, 32

common problems, 181
communications sessions, 137
device sessons, 137, 141
function support, 142, 147
interface sessions, 137, 146
SICL functions, 138

S
Selecting communications session,

GPIB, 71
GPIO, 91
RS-232, 137
VXI, 103

Sending I/O commands, 35
Sessions

GPIB commander sessions, 83
GPIB interface sessions, 78
GPIO interface sessions, 94
LAN interface sessions, 167
LAN-gatewayed sessions, 160
RS-232 interface sessions, 146
VXI device sessions, 105
VXI interface sessions, 117

SICL
application, building, 27
declaration file, 27
error codes, 177, 394
error messages, logging, 58
GPIO functions, 91
language reference, 205
system information, 387, 389
Using with LAN, 154
Using with RS-232, 136
Using with VXI, 102

SICL Function support
core SICL functions, 398
GPIB device sessions, 73
GPIB interface sessions, 79

GPIB SICL functions, 71, 400
GPIO SICL functions, 401
LAN SICL functions, 401
RS-232 SICL functions, 402
VXI SICL functions, 402

SICL Function Support
GPIB commander sessions, 84
RS-232 device sessions, 142
RS-232 interface sessions, 147
LAN-gatewayed sessions, 55

SRQ handlers, 56
Status byte, 74, 125, 345
STDIO, 35

T
Task Manager, 180
TCP/IP, 157
Threads, 211, 283
Trademark information, 8
Troubleshooting

common GPIO problems, 182
common LAN problems, 184
common RS-232 problems, 181
common Windows problems,
180
LAN client problems, 186
LAN server problems, 187
SICL error codes, 177

Troubleshooting SICL programs,
176

U
Using

GPIB commander sessions, 83
GPIB interface sessions, 78
GPIO interface sessions, 94
LAN interface sessions, 167
LAN-gatewayed sessions, 160
locks, 64
RS-232 interface sessions, 146
SICL with GPIB, 70
SICL with GPIO, 90
423

SICL with LAN, 154
SICL with RS-232, 136
SICL with VXI, 102
VXI device sessions, 105
VXI interface sessions, 117
VXI msg-based devices, 106
Using VXI reg-based devices,
108

V
Visual Basic applications, 29
Visual C++ compilers, 28
VME devices

communicating with, 119
declaring resources, 119
interrupts, 121
mapping VME memory, 120
reading/writing to device
registers, 121
unmapping memory space, 121
VXI device types, 105

VXI
backplane memory i/o
block memory access, 127
command module, 109
compiled SCPI, 108
communications session, 103
device sessions, using, 105
instrument driver, defining, 110
interface sessions, 117, 126
I-SCPI device sessions, 125
iscpi interface, 108
msg-based device sessions,
124
msg-based devices, 105, 106
performance, 127
programming to registers, 108,
113
register-based device sessions,
105, 108, 126
register-based drivers, 111
SICL function support, 124

SICL functions, 104
single location peek/poke, 127
using message-based devices,
106

W
white-space characters, 42
Windows applications, thread

support, 30

X
XON/XOFF, 147
424

 Part Number: E2094-90037
Printed in U.S.A. E0700

�����
����

	1 Introduction
	What’s in This Guide?
	SICL Overview
	Introducing VISA and SICL
	SICL Description

	2 Getting Started with SICL
	Getting Started Using C
	C Program Example Code
	C Example Code Description
	Compiling the C Example Program
	Running the C Example Program
	Where to Go Next

	Getting Started Using Visual Basic
	Where to Go Next

	3 Programming with SICL
	Building a SICL Application
	Including the SICL Declaration File
	Libraries for C Applications and DLLs
	Compiling and Linking C Applications
	Loading and Running Visual Basic Applications
	Thread Support for 32-bit Windows Applications

	Opening a Communications Session
	Steps to Open a Communications Session
	Device Sessions
	Interface Sessions
	Commander Sessions

	Sending I/O Commands
	Formatted I/O in C Applications
	Formatted I/O in Visual Basic Applications
	Non-Formatted I/O

	Handling Asynchronous Events
	SRQ Handlers
	Interrupt Handlers
	Temporarily Disabling/Enabling Asynchronous Events

	Handling Errors
	Logging SICL Error Messages
	Using Error Handlers in C
	Using Error Handlers in Visual Basic

	Using Locks
	What are Locks?
	Lock Actions
	Locking in a Multi-User Environment
	Example: Locking (C Program)
	Example: Locking (Visual Basic)

	4 Using SICL with GPIB
	Introduction
	Selecting a GPIB Communications Session
	SICL GPIB Functions

	Using GPIB Device Sessions
	Addressing GPIB Devices
	SICL Function Support for GPIB Device Session
	Example: GPIB Device Session (C)
	Example: GPIB Device Session (Visual Basic)

	Using GPIB Interface Sessions
	Addressing GPIB Interfaces
	SICL Function Support for GPIB Interface Sessions
	Example: GPIB Interface Session (C)
	Example: GPIB Interface Session (Visual Basic)

	Using GPIB Commander Sessions
	Addressing GPIB Commanders
	SICL Function Support for GPIB Commander Sessions

	Writing GPIB Interrupt Handlers
	Multiple I_INTR_GPIB_TLAC Interrupts
	Handling SRQs from Multiple GPIB Instruments

	5 Using SICL with GPIO
	Introduction
	Selecting a GPIO Communications Session
	SICL GPIO Functions

	Using GPIO Interface Sessions
	Addressing GPIO Interfaces
	SICL Function Support with GPIO Interface Sessions
	Example: GPIO Interface Session (C)
	Example: GPIO Interface Session (Visual Basic)
	Example: GPIO Interrupts

	6 Using SICL with VXI
	Introduction
	Selecting a VXI Communications Session
	SICL VXI Functions

	Using VXI Device Sessions
	VXI Device Types
	Using VXI Message-Based Devices
	Using Register-Based Devices

	Using VXI Interface Sessions
	Addressing VXI Interface Sessions
	Example: VXI Interface Session (C)

	Communicating with VME Devices
	Declaring Resources
	Mapping VME Memory
	Reading and Writing to Device Registers
	Unmapping Memory Space
	VME Interrupts
	Example: VME Interrupts (C)

	SICL Function Support with VXI
	VXI Message-Based Device Sessions
	Interpreted SCPI Device Sessions
	VXI Register-Based Device Sessions
	VXI Interface Sessions

	VXI Backplane Memory I/O Performance
	Using VXI-Specific Interrupts
	Example: VXI Interrupt Actions (C)
	Example: Processing VME Interrupts (C)

	7 Using SICL with RS-232
	Introduction
	Selecting an RS-232 Communications Session
	SICL RS-232 Functions

	Using RS-232 Device Sessions
	Addressing RS-232 Devices
	SICL Function Support for RS-232 Device Sessions
	Example: RS-232 Device Session (C)
	Example: RS-232 Device Session (Visual Basic)

	Using RS-232 Interface Sessions
	Addressing RS-232 Interfaces
	SICL Function Support for RS-232 Interface Sessions
	Example: RS-232 Interface Session (C)
	Example: RS-232 Interface Session (Visual Basic)

	8 Using SICL with LAN
	LAN Overview
	LAN Client/Server Model
	LAN Hardware Architecture
	LAN Software Architecture
	SICL LAN Configuration and Performance
	SICL LAN Functions

	Using LAN-gatewayed Sessions
	Addressing Devices/Interfaces with LAN- gatewayed Sessions
	SICL Function Support with LAN-gatewayed Sessions
	Example: LAN-gatewayed Session (C)
	Example: LAN-gatewayed Session (Visual Basic)

	Using LAN Interface Sessions
	Addressing LAN Interface Sessions
	SICL Function Support with LAN Interface Sessions

	Using Locks and Threads over LAN
	Using Timeouts with LAN
	LAN Timeout Functions
	Default LAN Timeout Values
	Timeouts in Multi-threaded Applications
	Timeout Configurations to Be Avoided
	Application Terminations and Timeouts

	9 Troubleshooting SICL Programs
	SICL Error Codes
	Common Windows Problems
	Common RS-232 Problems
	Common GPIO Problems
	Bad Address (for iopen)
	Operation Not Supported
	No Device
	Bad Parameter

	Common LAN Problems
	General Troubleshooting Techniques
	LAN Client Problems
	LAN Server Problems

	10 More SICL Example Programs
	Example: Oscillosope Program (C)
	Program Files
	Building the Project File
	Program Overview

	Example: Oscillosope Program (Visual Basic)
	Program Files
	Loading and Running the Program
	Program Overview

	11 SICL Language Reference
	Introduction
	Function Specifics

	IBLOCKCOPY
	IBLOCKMOVEX
	ICAUSEERR
	ICLEAR
	ICLOSE
	IDEREFPTR
	IFLUSH
	IFREAD
	IFWRITE
	IGETADDR
	IGETDATA
	IGETDEVADDR
	IGETERRNO
	IGETERRSTR
	IGETGATEWAYTYPE
	IGETINTFSESS
	IGETINTFTYPE
	IGETLOCKWAIT
	IGETLU
	IGETLUINFO
	IGETLULIST
	IGETONERROR
	IGETONINTR
	IGETONSRQ
	IGETSESSTYPE
	IGETTERMCHR
	IGETTIMEOUT
	IGPIBATNCTL
	IGPIBBUSADDR
	IGPIBBUSSTATUS
	IGPIBGETT1DELAY
	IGPIBLLO
	IGPIBPASSCTL
	IGPIBPPOLL
	IGPIBPPOLLCONFIG
	IGPIBPPOLLRESP
	IGPIBRENCTL
	IGPIBSENDCMD
	IGPIBSETT1DELAY
	IGPIOCTRL
	IGPIOGETWIDTH
	IGPIOSETWIDTH
	IGPIOSTAT
	IHINT
	IINTROFF
	IINTRON
	ILANGETTIMEOUT
	ILANTIMEOUT
	ILOCAL
	ILOCK
	IMAP
	IMAPX
	IMAPINFO
	IONERROR
	IONINTR
	IONSRQ
	IOPEN
	IPEEK
	IPEEKX8, IPEEKX16, IPEEKX32
	IPOKE
	IPOKEX8, IPOKEX16, IPOKEX32
	IPOPFIFO
	IPRINTF
	IPROMPTF
	IPUSHFIFO
	IREAD
	IREADSTB
	IREMOTE
	ISCANF
	ISERIALBREAK
	ISERIALCTRL
	ISERIALMCLCTRL
	ISERIALMCLSTAT
	ISERIALSTAT
	ISETBUF
	ISETDATA
	ISETINTR
	ISETLOCKWAIT
	ISETSTB
	ISETUBUF
	ISWAP
	ITERMCHR
	ITIMEOUT
	ITRIGGER
	IUNLOCK
	IUNMAP
	IUNMAPX
	IVERSION
	IVXIBUSSTATUS
	IVXIGETTRIGROUTE
	IVXIRMINFO
	IVXISERVANTS
	IVXITRIGOFF
	IVXITRIGON
	IVXITRIGROUTE
	IVXIWAITNORMOP
	IVXIWS
	IWAITHDLR
	IWRITE
	IXTRIG
	_SICLCLEANUP

	A SICL System Information
	Windows 95/Windows 98
	File Location
	The Registry
	SICL Configuration Information

	Windows NT/Windows 2000
	File Location
	The Registry
	SICL Configuration Information

	B Porting to Visual Basic
	C SICL Error Codes
	D SICL Function Summary
	E RS-232 Cables
	Cable/Adapter Part Numbers
	Cable/Adapter Pinouts

	Glossary
	Index

